These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

307 related articles for article (PubMed ID: 31883552)

  • 61. Deep Learning in Drug Discovery.
    Gawehn E; Hiss JA; Schneider G
    Mol Inform; 2016 Jan; 35(1):3-14. PubMed ID: 27491648
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Entangled Conditional Adversarial Autoencoder for de Novo Drug Discovery.
    Polykovskiy D; Zhebrak A; Vetrov D; Ivanenkov Y; Aladinskiy V; Mamoshina P; Bozdaganyan M; Aliper A; Zhavoronkov A; Kadurin A
    Mol Pharm; 2018 Oct; 15(10):4398-4405. PubMed ID: 30180591
    [TBL] [Abstract][Full Text] [Related]  

  • 63. De Novo Molecular Design by Combining Deep Autoencoder Recurrent Neural Networks with Generative Topographic Mapping.
    Sattarov B; Baskin II; Horvath D; Marcou G; Bjerrum EJ; Varnek A
    J Chem Inf Model; 2019 Mar; 59(3):1182-1196. PubMed ID: 30785751
    [TBL] [Abstract][Full Text] [Related]  

  • 64.
    Ballarotto M; Willems S; Stiller T; Nawa F; Marschner JA; Grisoni F; Merk D
    J Med Chem; 2023 Jun; 66(12):8170-8177. PubMed ID: 37256819
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Automated De Novo Drug Design: Are We Nearly There Yet?
    Schneider G; Clark DE
    Angew Chem Int Ed Engl; 2019 Aug; 58(32):10792-10803. PubMed ID: 30730601
    [TBL] [Abstract][Full Text] [Related]  

  • 66. GuacaMol: Benchmarking Models for de Novo Molecular Design.
    Brown N; Fiscato M; Segler MHS; Vaucher AC
    J Chem Inf Model; 2019 Mar; 59(3):1096-1108. PubMed ID: 30887799
    [TBL] [Abstract][Full Text] [Related]  

  • 67. cMolGPT: A Conditional Generative Pre-Trained Transformer for Target-Specific De Novo Molecular Generation.
    Wang Y; Zhao H; Sciabola S; Wang W
    Molecules; 2023 May; 28(11):. PubMed ID: 37298906
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Automated Generation of Novel Fragments Using Screening Data, a Dual SMILES Autoencoder, Transfer Learning and Syntax Correction.
    Bilsland AE; McAulay K; West R; Pugliese A; Bower J
    J Chem Inf Model; 2021 Jun; 61(6):2547-2559. PubMed ID: 34029470
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Use of machine learning approaches for novel drug discovery.
    Lima AN; Philot EA; Trossini GH; Scott LP; Maltarollo VG; Honorio KM
    Expert Opin Drug Discov; 2016; 11(3):225-39. PubMed ID: 26814169
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Integrating structure-based approaches in generative molecular design.
    Thomas M; Bender A; de Graaf C
    Curr Opin Struct Biol; 2023 Apr; 79():102559. PubMed ID: 36870277
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Deep learning for computational chemistry.
    Goh GB; Hodas NO; Vishnu A
    J Comput Chem; 2017 Jun; 38(16):1291-1307. PubMed ID: 28272810
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Deep generative modeling for protein design.
    Strokach A; Kim PM
    Curr Opin Struct Biol; 2022 Feb; 72():226-236. PubMed ID: 34963082
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Generative Chemical Transformer: Neural Machine Learning of Molecular Geometric Structures from Chemical Language via Attention.
    Kim H; Na J; Lee WB
    J Chem Inf Model; 2021 Dec; 61(12):5804-5814. PubMed ID: 34855384
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Optimizing blood-brain barrier permeation through deep reinforcement learning for de novo drug design.
    Pereira T; Abbasi M; Oliveira JL; Ribeiro B; Arrais J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i84-i92. PubMed ID: 34252946
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Learning the generative principles of a symbol system from limited examples.
    Yuan L; Xiang V; Crandall D; Smith L
    Cognition; 2020 Jul; 200():104243. PubMed ID: 32151856
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Has Drug Design Augmented by Artificial Intelligence Become a Reality?
    Chen H; Engkvist O
    Trends Pharmacol Sci; 2019 Nov; 40(11):806-809. PubMed ID: 31629547
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The rise of deep learning in drug discovery.
    Chen H; Engkvist O; Wang Y; Olivecrona M; Blaschke T
    Drug Discov Today; 2018 Jun; 23(6):1241-1250. PubMed ID: 29366762
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Generative Pre-trained Transformer (GPT) based model with relative attention for de novo drug design.
    Haroon S; C A H; A S J
    Comput Biol Chem; 2023 Oct; 106():107911. PubMed ID: 37450999
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Generative deep learning enables the discovery of a potent and selective RIPK1 inhibitor.
    Li Y; Zhang L; Wang Y; Zou J; Yang R; Luo X; Wu C; Yang W; Tian C; Xu H; Wang F; Yang X; Li L; Yang S
    Nat Commun; 2022 Nov; 13(1):6891. PubMed ID: 36371441
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Novel deep generative simultaneous recurrent model for efficient representation learning.
    Alam M; Vidyaratne L; Iftekharuddin KM
    Neural Netw; 2018 Nov; 107():12-22. PubMed ID: 30143328
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.