These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
438 related articles for article (PubMed ID: 31883911)
1. Tumor intrinsic and extrinsic immune functions of CD155. O'Donnell JS; Madore J; Li XY; Smyth MJ Semin Cancer Biol; 2020 Oct; 65():189-196. PubMed ID: 31883911 [TBL] [Abstract][Full Text] [Related]
2. CD155/TIGIT, a novel immune checkpoint in human cancers (Review). Liu L; You X; Han S; Sun Y; Zhang J; Zhang Y Oncol Rep; 2021 Mar; 45(3):835-845. PubMed ID: 33469677 [TBL] [Abstract][Full Text] [Related]
3. CD155 in tumor progression and targeted therapy. Zhan M; Zhang Z; Zhao X; Zhang Y; Liu T; Lu L; Li XY Cancer Lett; 2022 Oct; 545():215830. PubMed ID: 35870689 [TBL] [Abstract][Full Text] [Related]
4. DNAM-1 and the TIGIT/PVRIG/TACTILE Axis: Novel Immune Checkpoints for Natural Killer Cell-Based Cancer Immunotherapy. Sanchez-Correa B; Valhondo I; Hassouneh F; Lopez-Sejas N; Pera A; Bergua JM; Arcos MJ; Bañas H; Casas-Avilés I; Durán E; Alonso C; Solana R; Tarazona R Cancers (Basel); 2019 Jun; 11(6):. PubMed ID: 31234588 [TBL] [Abstract][Full Text] [Related]
5. CD155, an onco-immunologic molecule in human tumors. Gao J; Zheng Q; Xin N; Wang W; Zhao C Cancer Sci; 2017 Oct; 108(10):1934-1938. PubMed ID: 28730595 [TBL] [Abstract][Full Text] [Related]
6. The immune suppressive factors CD155 and PD-L1 show contrasting expression patterns and immune correlates in ovarian and other cancers. Smazynski J; Hamilton PT; Thornton S; Milne K; Wouters MCA; Webb JR; Nelson BH Gynecol Oncol; 2020 Jul; 158(1):167-177. PubMed ID: 32446718 [TBL] [Abstract][Full Text] [Related]
7. CD155 immunoregulation as a target for natural killer cell immunotherapy in glioblastoma. Lupo KB; Matosevic S J Hematol Oncol; 2020 Jun; 13(1):76. PubMed ID: 32532329 [TBL] [Abstract][Full Text] [Related]
8. Increased Soluble CD226 in Sera of Patients with Cutaneous T-Cell Lymphoma Mediates Cytotoxic Activity against Tumor Cells via CD155. Takahashi N; Sugaya M; Suga H; Oka T; Kawaguchi M; Miyagaki T; Fujita H; Inozume T; Sato S J Invest Dermatol; 2017 Aug; 137(8):1766-1773. PubMed ID: 28395975 [TBL] [Abstract][Full Text] [Related]
9. Asynchronous blockade of PD-L1 and CD155 by polymeric nanoparticles inhibits triple-negative breast cancer progression and metastasis. Chen C; Guo Q; Fu H; Yu J; Wang L; Sun Y; Zhang J; Duan Y Biomaterials; 2021 Aug; 275():120988. PubMed ID: 34186238 [TBL] [Abstract][Full Text] [Related]
10. Tumor CD155 Expression Is Associated with Resistance to Anti-PD1 Immunotherapy in Metastatic Melanoma. Lepletier A; Madore J; O'Donnell JS; Johnston RL; Li XY; McDonald E; Ahern E; Kuchel A; Eastgate M; Pearson SA; Mallardo D; Ascierto PA; Massi D; Merelli B; Mandala M; Wilmott JS; Menzies AM; Leduc C; Stagg J; Routy B; Long GV; Scolyer RA; Bald T; Waddell N; Dougall WC; Teng MWL; Smyth MJ Clin Cancer Res; 2020 Jul; 26(14):3671-3681. PubMed ID: 32345648 [TBL] [Abstract][Full Text] [Related]
11. CD155-TIGIT Axis as a Therapeutic Target for Cancer Immunotherapy. Mu Y; Guan X Curr Med Chem; 2024; 31(13):1634-1645. PubMed ID: 38666504 [TBL] [Abstract][Full Text] [Related]
12. CD155: A Multi-Functional Molecule in Tumor Progression. Molfetta R; Zitti B; Lecce M; Milito ND; Stabile H; Fionda C; Cippitelli M; Gismondi A; Santoni A; Paolini R Int J Mol Sci; 2020 Jan; 21(3):. PubMed ID: 32019260 [TBL] [Abstract][Full Text] [Related]
13. Essential role of CD155 glycosylation in functional binding to DNAM-1 on natural killer cells. Tahara S; Okumura G; Matsuo T; Shibuya A; Shibuya K Int Immunol; 2024 Apr; 36(6):317-325. PubMed ID: 38289706 [TBL] [Abstract][Full Text] [Related]
14. Functional characterization of DNAM-1 (CD226) interaction with its ligands PVR (CD155) and nectin-2 (PRR-2/CD112). Tahara-Hanaoka S; Shibuya K; Onoda Y; Zhang H; Yamazaki S; Miyamoto A; Honda S; Lanier LL; Shibuya A Int Immunol; 2004 Apr; 16(4):533-8. PubMed ID: 15039383 [TBL] [Abstract][Full Text] [Related]
15. UPR decreases CD226 ligand CD155 expression and sensitivity to NK cell-mediated cytotoxicity in hepatoma cells. Gong J; Fang L; Liu R; Wang Y; Xing J; Chen Y; Zhuang R; Zhang Y; Zhang C; Yang A; Zhang X; Jin B; Chen L Eur J Immunol; 2014 Dec; 44(12):3758-67. PubMed ID: 25209846 [TBL] [Abstract][Full Text] [Related]
16. Repositioning liothyronine for cancer immunotherapy by blocking the interaction of immune checkpoint TIGIT/PVR. Zhou X; Du J; Wang H; Chen C; Jiao L; Cheng X; Zhou X; Chen S; Gou S; Zhao W; Zhai W; Chen J; Gao Y Cell Commun Signal; 2020 Sep; 18(1):142. PubMed ID: 32894141 [TBL] [Abstract][Full Text] [Related]
17. CD155 loss enhances tumor suppression via combined host and tumor-intrinsic mechanisms. Li XY; Das I; Lepletier A; Addala V; Bald T; Stannard K; Barkauskas D; Liu J; Aguilera AR; Takeda K; Braun M; Nakamura K; Jacquelin S; Lane SW; Teng MW; Dougall WC; Smyth MJ J Clin Invest; 2018 Jun; 128(6):2613-2625. PubMed ID: 29757192 [TBL] [Abstract][Full Text] [Related]
18. DNAM-1 versus TIGIT: competitive roles in tumor immunity and inflammatory responses. Shibuya A; Shibuya K Int Immunol; 2021 Nov; 33(12):687-692. PubMed ID: 34694361 [TBL] [Abstract][Full Text] [Related]
19. TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy. Dougall WC; Kurtulus S; Smyth MJ; Anderson AC Immunol Rev; 2017 Mar; 276(1):112-120. PubMed ID: 28258695 [TBL] [Abstract][Full Text] [Related]
20. Targeting the "PVR-TIGIT axis" with immune checkpoint therapies. Gorvel L; Olive D F1000Res; 2020; 9():. PubMed ID: 32489646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]