These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Neovascularization is attenuated with aldosterone synthase inhibition in rats with retinopathy. Deliyanti D; Miller AG; Tan G; Binger KJ; Samson AL; Wilkinson-Berka JL Hypertension; 2012 Mar; 59(3):607-13. PubMed ID: 22275532 [TBL] [Abstract][Full Text] [Related]
3. Retinal vasculopathy is reduced by dietary salt restriction: involvement of Glia, ENaCα, and the renin-angiotensin-aldosterone system. Deliyanti D; Armani R; Casely D; Figgett WA; Agrotis A; Wilkinson-Berka JL Arterioscler Thromb Vasc Biol; 2014 Sep; 34(9):2033-41. PubMed ID: 25012132 [TBL] [Abstract][Full Text] [Related]
4. Identification of a retinal aldosterone system and the protective effects of mineralocorticoid receptor antagonism on retinal vascular pathology. Wilkinson-Berka JL; Tan G; Jaworski K; Harbig J; Miller AG Circ Res; 2009 Jan; 104(1):124-33. PubMed ID: 19038868 [TBL] [Abstract][Full Text] [Related]
5. Spironolactone suppresses aldosterone-induced Kv1.5 expression by attenuating mineralocorticoid receptor-Nox1/2/4-mediated ROS generation in neonatal rat atrial myocytes. Lu G; Li J; Zhai Y; Li Q; Xie D; Zhang J; Xiao Y; Gao X Biochem Biophys Res Commun; 2019 Dec; 520(2):379-384. PubMed ID: 31606204 [TBL] [Abstract][Full Text] [Related]
6. Involvement of renin-angiotensin-aldosterone system in calcium oxalate crystal induced activation of NADPH oxidase and renal cell injury. Tsuji H; Wang W; Sunil J; Shimizu N; Yoshimura K; Uemura H; Peck AB; Khan SR World J Urol; 2016 Jan; 34(1):89-95. PubMed ID: 25981400 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of NOX1/4 with GKT137831: a potential novel treatment to attenuate neuroglial cell inflammation in the retina. Deliyanti D; Wilkinson-Berka JL J Neuroinflammation; 2015 Jul; 12():136. PubMed ID: 26219952 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of the Nuclear Receptor RORγ and Interleukin-17A Suppresses Neovascular Retinopathy: Involvement of Immunocompetent Microglia. Talia DM; Deliyanti D; Agrotis A; Wilkinson-Berka JL Arterioscler Thromb Vasc Biol; 2016 Jun; 36(6):1186-96. PubMed ID: 27055905 [TBL] [Abstract][Full Text] [Related]
9. Reactive oxygen species, Nox and angiotensin II in angiogenesis: implications for retinopathy. Wilkinson-Berka JL; Rana I; Armani R; Agrotis A Clin Sci (Lond); 2013 May; 124(10):597-615. PubMed ID: 23379642 [TBL] [Abstract][Full Text] [Related]
10. The vasoneuronal effects of AT1 receptor blockade in a rat model of retinopathy of prematurity. Hatzopoulos KM; Vessey KA; Wilkinson-Berka JL; Fletcher EL Invest Ophthalmol Vis Sci; 2014 Jun; 55(6):3957-70. PubMed ID: 24894399 [TBL] [Abstract][Full Text] [Related]
11. NADPH oxidase-derived H(2)O(2) contributes to angiotensin II-induced aldosterone synthesis in human and rat adrenal cortical cells. Rajamohan SB; Raghuraman G; Prabhakar NR; Kumar GK Antioxid Redox Signal; 2012 Aug; 17(3):445-59. PubMed ID: 22214405 [TBL] [Abstract][Full Text] [Related]
12. The Role of Angiotensin II/AT1 Receptor Signaling in Regulating Retinal Microglial Activation. Phipps JA; Vessey KA; Brandli A; Nag N; Tran MX; Jobling AI; Fletcher EL Invest Ophthalmol Vis Sci; 2018 Jan; 59(1):487-498. PubMed ID: 29368003 [TBL] [Abstract][Full Text] [Related]
13. Central interactions of aldosterone and angiotensin II in aldosterone- and angiotensin II-induced hypertension. Xue B; Beltz TG; Yu Y; Guo F; Gomez-Sanchez CE; Hay M; Johnson AK Am J Physiol Heart Circ Physiol; 2011 Feb; 300(2):H555-64. PubMed ID: 21112947 [TBL] [Abstract][Full Text] [Related]
14. Endothelin-2 Injures the Blood-Retinal Barrier and Macroglial Müller Cells: Interactions with Angiotensin II, Aldosterone, and NADPH Oxidase. Alrashdi SF; Deliyanti D; Talia DM; Wilkinson-Berka JL Am J Pathol; 2018 Mar; 188(3):805-817. PubMed ID: 29248456 [TBL] [Abstract][Full Text] [Related]
15. Retinal neovascularization is prevented by blockade of the renin-angiotensin system. Moravski CJ; Kelly DJ; Cooper ME; Gilbert RE; Bertram JF; Shahinfar S; Skinner SL; Wilkinson-Berka JL Hypertension; 2000 Dec; 36(6):1099-104. PubMed ID: 11116132 [TBL] [Abstract][Full Text] [Related]
16. Mineralocorticoid receptor blockade attenuates chronic overexpression of the renin-angiotensin-aldosterone system stimulation of reduced nicotinamide adenine dinucleotide phosphate oxidase and cardiac remodeling. Stas S; Whaley-Connell A; Habibi J; Appesh L; Hayden MR; Karuparthi PR; Qazi M; Morris EM; Cooper SA; Link CD; Stump C; Hay M; Ferrario C; Sowers JR Endocrinology; 2007 Aug; 148(8):3773-80. PubMed ID: 17494996 [TBL] [Abstract][Full Text] [Related]
17. Central and peripheral slow-pressor mechanisms contributing to Angiotensin II-salt hypertension in rats. Lu J; Wang HW; Ahmad M; Keshtkar-Jahromi M; Blaustein MP; Hamlyn JM; Leenen FHH Cardiovasc Res; 2018 Feb; 114(2):233-246. PubMed ID: 29126194 [TBL] [Abstract][Full Text] [Related]
19. Additive amelioration of oxidative stress and cardiac function by combined mineralocorticoid and angiotensin receptor blockers in postinfarct failing hearts. Noda K; Kobara M; Hamada J; Yoshifuji Y; Shiraishi T; Tanaka T; Wang J; Toba H; Nakata T J Cardiovasc Pharmacol; 2012 Aug; 60(2):140-9. PubMed ID: 22549451 [TBL] [Abstract][Full Text] [Related]
20. Role of brain corticosterone and aldosterone in central angiotensin II-induced hypertension. Huang BS; White RA; Ahmad M; Leenen FH Hypertension; 2013 Sep; 62(3):564-71. PubMed ID: 23856493 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]