These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 31884054)
1. Rab GDP-dissociation inhibitor gdiA is an essential gene required for cell wall chitin deposition in Aspergillus niger. van Leeuwe TM; Gerritsen A; Arentshorst M; Punt PJ; Ram AFJ Fungal Genet Biol; 2020 Mar; 136():103319. PubMed ID: 31884054 [TBL] [Abstract][Full Text] [Related]
2. Interrogation of the cell wall integrity pathway in Aspergillus niger identifies a putative negative regulator of transcription involved in chitin deposition. van Leeuwe TM; Arentshorst M; Punt PJ; Ram AFJ Gene; 2020 Dec; 763S():100028. PubMed ID: 34493363 [TBL] [Abstract][Full Text] [Related]
3. Interrogation of the cell wall integrity pathway in van Leeuwe TM; Arentshorst M; Punt PJ; Ram AFJ Gene X; 2020 Dec; 5():100028. PubMed ID: 32550555 [TBL] [Abstract][Full Text] [Related]
4. Systems approaches to predict the functions of glycoside hydrolases during the life cycle of Aspergillus niger using developmental mutants ∆brlA and ∆flbA. van Munster JM; Nitsche BM; Akeroyd M; Dijkhuizen L; van der Maarel MJ; Ram AF PLoS One; 2015; 10(1):e0116269. PubMed ID: 25629352 [TBL] [Abstract][Full Text] [Related]
5. The cell wall stress response in Aspergillus niger involves increased expression of the glutamine : fructose-6-phosphate amidotransferase-encoding gene (gfaA) and increased deposition of chitin in the cell wall. Ram AF; Arentshorst M; Damveld RA; vanKuyk PA; Klis FM; van den Hondel CA Microbiology (Reading); 2004 Oct; 150(Pt 10):3315-26. PubMed ID: 15470111 [TBL] [Abstract][Full Text] [Related]
6. Transcriptomic and molecular genetic analysis of the cell wall salvage response of Aspergillus niger to the absence of galactofuranose synthesis. Park J; Hulsman M; Arentshorst M; Breeman M; Alazi E; Lagendijk EL; Rocha MC; Malavazi I; Nitsche BM; van den Hondel CA; Meyer V; Ram AF Cell Microbiol; 2016 Sep; 18(9):1268-84. PubMed ID: 27264789 [TBL] [Abstract][Full Text] [Related]
7. Highly efficient single base editing in Aspergillus niger with CRISPR/Cas9 cytidine deaminase fusion. Huang L; Dong H; Zheng J; Wang B; Pan L Microbiol Res; 2019; 223-225():44-50. PubMed ID: 31178050 [TBL] [Abstract][Full Text] [Related]
8. Genomic analysis of the aconidial and high-performance protein producer, industrially relevant Aspergillus niger SH2 strain. Yin C; Wang B; He P; Lin Y; Pan L Gene; 2014 May; 541(2):107-14. PubMed ID: 24630962 [TBL] [Abstract][Full Text] [Related]
9. Identification and characterization of a family of secretion-related small GTPase-encoding genes from the filamentous fungus Aspergillus niger: a putative SEC4 homologue is not essential for growth. Punt PJ; Seiboth B; Weenink XO; van Zeijl C; Lenders M; Konetschny C; Ram AF; Montijn R; Kubicek CP; van den Hondel CA Mol Microbiol; 2001 Jul; 41(2):513-25. PubMed ID: 11489135 [TBL] [Abstract][Full Text] [Related]
10. Functional YFP-tagging of the essential GDP-mannose transporter reveals an important role for the secretion related small GTPase SrgC protein in maintenance of Golgi bodies in Aspergillus niger. Carvalho ND; Arentshorst M; Weenink XO; Punt PJ; van den Hondel CA; Ram AF Fungal Biol; 2011 Mar; 115(3):253-64. PubMed ID: 21354532 [TBL] [Abstract][Full Text] [Related]
11. CRISPR/Cas9 facilitates rapid generation of constitutive forms of transcription factors in Aspergillus niger through specific on-site genomic mutations resulting in increased saccharification of plant biomass. Kun RS; Meng J; Salazar-Cerezo S; Mäkelä MR; de Vries RP; Garrigues S Enzyme Microb Technol; 2020 May; 136():109508. PubMed ID: 32331715 [TBL] [Abstract][Full Text] [Related]
12. Identification and functional analysis of two Golgi-localized UDP-galactofuranose transporters with overlapping functions in Aspergillus niger. Park J; Tefsen B; Heemskerk MJ; Lagendijk EL; van den Hondel CA; van Die I; Ram AF BMC Microbiol; 2015 Nov; 15():253. PubMed ID: 26526354 [TBL] [Abstract][Full Text] [Related]
14. Chitinases CtcB and CfcI modify the cell wall in sporulating aerial mycelium of Aspergillus niger. van Munster JM; Nitsche BM; Krijgsheld P; van Wijk A; Dijkhuizen L; Wösten HA; Ram AF; van der Maarel MJEC Microbiology (Reading); 2013 Sep; 159(Pt 9):1853-1867. PubMed ID: 23832003 [TBL] [Abstract][Full Text] [Related]
15. Vacuolar H(+)-ATPase plays a key role in cell wall biosynthesis of Aspergillus niger. Schachtschabel D; Arentshorst M; Lagendijk EL; Ram AF Fungal Genet Biol; 2012 Apr; 49(4):284-93. PubMed ID: 22222772 [TBL] [Abstract][Full Text] [Related]
16. The transcriptional repressor TupA in Aspergillus niger is involved in controlling gene expression related to cell wall biosynthesis, development, and nitrogen source availability. Schachtschabel D; Arentshorst M; Nitsche BM; Morris S; Nielsen KF; van den Hondel CA; Klis FM; Ram AF PLoS One; 2013; 8(10):e78102. PubMed ID: 24205111 [TBL] [Abstract][Full Text] [Related]
17. Increase in chitin as an essential response to defects in assembly of cell wall polymers in the ggp1delta mutant of Saccharomyces cerevisiae. Popolo L; Gilardelli D; Bonfante P; Vai M J Bacteriol; 1997 Jan; 179(2):463-9. PubMed ID: 8990299 [TBL] [Abstract][Full Text] [Related]
18. The Aspergillus niger MADS-box transcription factor RlmA is required for cell wall reinforcement in response to cell wall stress. Damveld RA; Arentshorst M; Franken A; vanKuyk PA; Klis FM; van den Hondel CA; Ram AF Mol Microbiol; 2005 Oct; 58(1):305-19. PubMed ID: 16164567 [TBL] [Abstract][Full Text] [Related]
19. Characterization of the starvation-induced chitinase CfcA and α-1,3-glucanase AgnB of Aspergillus niger. van Munster JM; Dobruchowska JM; Veloo R; Dijkhuizen L; van der Maarel MJ Appl Microbiol Biotechnol; 2015 Mar; 99(5):2209-23. PubMed ID: 25219534 [TBL] [Abstract][Full Text] [Related]
20. Forced Recycling of an AMA1-Based Genome-Editing Plasmid Allows for Efficient Multiple Gene Deletion/Integration in the Industrial Filamentous Fungus Katayama T; Nakamura H; Zhang Y; Pascal A; Fujii W; Maruyama JI Appl Environ Microbiol; 2019 Feb; 85(3):. PubMed ID: 30478227 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]