BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 31884379)

  • 1. Aggregation and stability of nanoscale plastics in aquatic environment.
    Shams M; Alam I; Chowdhury I
    Water Res; 2020 Mar; 171():115401. PubMed ID: 31884379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment.
    Chowdhury I; Duch MC; Mansukhani ND; Hersam MC; Bouchard D
    Environ Sci Technol; 2013 Jun; 47(12):6288-96. PubMed ID: 23668881
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggregation kinetics of microplastics in aquatic environment: Complex roles of electrolytes, pH, and natural organic matter.
    Li S; Liu H; Gao R; Abdurahman A; Dai J; Zeng F
    Environ Pollut; 2018 Jun; 237():126-132. PubMed ID: 29482018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions of nanoscale plastics with natural organic matter and silica surfaces using a quartz crystal microbalance.
    Shams M; Alam I; Chowdhury I
    Water Res; 2021 Jun; 197():117066. PubMed ID: 33774463
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aggregation kinetics of different surface-modified polystyrene nanoparticles in monovalent and divalent electrolytes.
    Yu S; Shen M; Li S; Fu Y; Zhang D; Liu H; Liu J
    Environ Pollut; 2019 Dec; 255(Pt 2):113302. PubMed ID: 31597113
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation kinetics of UV irradiated nanoplastics in aquatic environments.
    Liu Y; Hu Y; Yang C; Chen C; Huang W; Dang Z
    Water Res; 2019 Oct; 163():114870. PubMed ID: 31336206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggregation and stability of sulfate-modified polystyrene nanoplastics in synthetic and natural waters.
    Wang J; Zhao X; Wu A; Tang Z; Niu L; Wu F; Wang F; Zhao T; Fu Z
    Environ Pollut; 2021 Jan; 268(Pt A):114240. PubMed ID: 33152633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation kinetics of fragmental PET nanoplastics in aqueous environment: Complex roles of electrolytes, pH and humic acid.
    Dong S; Cai W; Xia J; Sheng L; Wang W; Liu H
    Environ Pollut; 2021 Jan; 268(Pt B):115828. PubMed ID: 33120151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Colloidal stability of nanosized activated carbon in aquatic systems: Effects of pH, electrolytes, and macromolecules.
    Shao Z; Luo S; Liang M; Ning Z; Sun W; Zhu Y; Mo J; Li Y; Huang W; Chen C
    Water Res; 2021 Sep; 203():117561. PubMed ID: 34450463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aggregation behavior of polystyrene nanoplastics: Role of surface functional groups and protein and electrolyte variation.
    Guo Y; Tang N; Lu L; Li N; Hu T; Guo J; Zhang J; Zeng Z; Liang J
    Chemosphere; 2024 Feb; 350():140998. PubMed ID: 38142881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between nano/micro plastics and suspended sediment in water: Implications on aggregation and settling.
    Li Y; Wang X; Fu W; Xia X; Liu C; Min J; Zhang W; Crittenden JC
    Water Res; 2019 Sep; 161():486-495. PubMed ID: 31229729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aggregation of ferrihydrite nanoparticles: Effects of pH, electrolytes,and organics.
    Liu J; Louie SM; Pham C; Dai C; Liang D; Hu Y
    Environ Res; 2019 May; 172():552-560. PubMed ID: 30856401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: measurements and environmental implications.
    Saleh NB; Pfefferle LD; Elimelech M
    Environ Sci Technol; 2008 Nov; 42(21):7963-9. PubMed ID: 19031888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aggregation behavior of graphitic C
    Dong S; Cai W; Sheng L; Wang W; Liu H; Xia J
    Environ Pollut; 2020 Aug; 263(Pt A):114646. PubMed ID: 33618479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concentration Dependent Effects of Bovine Serum Albumin on Graphene Oxide Colloidal Stability in Aquatic Environment.
    Sun B; Zhang Y; Chen W; Wang K; Zhu L
    Environ Sci Technol; 2018 Jul; 52(13):7212-7219. PubMed ID: 29894635
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of protein configuration on aggregation kinetics of nanoplastics in aquatic environment.
    Huang Z; Chen C; Liu Y; Liu S; Zeng D; Yang C; Huang W; Dang Z
    Water Res; 2022 Jul; 219():118522. PubMed ID: 35550965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aggregation kinetics and stability of biodegradable nanoplastics in aquatic environments: Effects of UV-weathering and proteins.
    Yu Y; Astner AF; Zahid TM; Chowdhury I; Hayes DG; Flury M
    Water Res; 2023 Jul; 239():120018. PubMed ID: 37201372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Stability of C60 nanoparticles in aquatic systems].
    Fang H; Shen BB; Jing J; Lu JL; Wang Y
    Huan Jing Ke Xue; 2014 Apr; 35(4):1337-42. PubMed ID: 24946585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effect of Natural Organic Matter and Electrolytes on the Aggregation of C60 Nanoparticles in Aquatic Systems].
    Fang H; Jing J; Yu JH; Wang YT
    Huan Jing Ke Xue; 2015 Oct; 36(10):3715-9. PubMed ID: 26841603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The crucial role of a protein corona in determining the aggregation kinetics and colloidal stability of polystyrene nanoplastics.
    Li X; He E; Jiang K; Peijnenburg WJGM; Qiu H
    Water Res; 2021 Feb; 190():116742. PubMed ID: 33348070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.