These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 31884411)
41. Seasonal variation in aerosol composition and concentration upon transport from the outdoor to indoor environment. Avery AM; Waring MS; DeCarlo PF Environ Sci Process Impacts; 2019 Mar; 21(3):528-547. PubMed ID: 30698188 [TBL] [Abstract][Full Text] [Related]
42. Monitoring and factors affecting levels of airborne and water bromoform in chlorinated seawater swimming pools. Boudenne JL; Parinet J; Demelas C; Manasfi T; Coulomb B J Environ Sci (China); 2017 Aug; 58():262-270. PubMed ID: 28774617 [TBL] [Abstract][Full Text] [Related]
43. Sources of variability in levels and exposure to trihalomethanes. Villanueva CM; Gagniere B; Monfort C; Nieuwenhuijsen MJ; Cordier S Environ Res; 2007 Feb; 103(2):211-20. PubMed ID: 17189628 [TBL] [Abstract][Full Text] [Related]
44. Influence of tap water quality and household water use activities on indoor air and internal dose levels of trihalomethanes. Nuckols JR; Ashley DL; Lyu C; Gordon SM; Hinckley AF; Singer P Environ Health Perspect; 2005 Jul; 113(7):863-70. PubMed ID: 16002374 [TBL] [Abstract][Full Text] [Related]
45. Impact of swimming pool water treatment system factors on the content of selected disinfection by-products. Wyczarska-Kokot J; Lempart-Rapacewicz A; Dudziak M; Łaskawiec E Environ Monit Assess; 2020 Oct; 192(11):722. PubMed ID: 33089340 [TBL] [Abstract][Full Text] [Related]
46. Spatio-temporal variations of indoor air quality in a university library. Sahu V; Gurjar BR Int J Environ Health Res; 2021 Jul; 31(5):475-490. PubMed ID: 31547676 [TBL] [Abstract][Full Text] [Related]
47. Changes in serum pneumoproteins caused by short-term exposures to nitrogen trichloride in indoor chlorinated swimming pools. Carbonnelle S; Francaux M; Doyle I; Dumont X; de Burbure C; Morel G; Michel O; Bernard A Biomarkers; 2002; 7(6):464-78. PubMed ID: 12581482 [TBL] [Abstract][Full Text] [Related]
48. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air. Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489 [TBL] [Abstract][Full Text] [Related]
49. Exposure to inhaled THM: comparison of continuous and event-specific exposure assessment for epidemiologic purposes. Thiriat N; Paulus H; Le Bot B; Glorennec P Environ Int; 2009 Oct; 35(7):1086-9. PubMed ID: 19576633 [TBL] [Abstract][Full Text] [Related]
50. Chloroform exposure in air and water in Swedish indoor swimming pools-urine as a biomarker of occupational exposure. Ragnebro O; Helmersmo K; Fornander L; Olsen R; Bryngelsson IL; Graff P; Westerlund J Ann Work Expo Health; 2023 Aug; 67(7):876-885. PubMed ID: 37339253 [TBL] [Abstract][Full Text] [Related]
51. Dynamics of gas-phase trichloramine (NCl3) in chlorinated, indoor swimming pool facilities. Weng SC; Weaver WA; Afifi MZ; Blatchley TN; Cramer JS; Chen J; Blatchley ER Indoor Air; 2011 Oct; 21(5):391-9. PubMed ID: 21251074 [TBL] [Abstract][Full Text] [Related]
52. Study of the occurrence and multi-pathway health risk assessment of regulated and unregulated disinfection by-products in drinking and swimming pool waters of Mediterranean cities. Kargaki S; Iakovides M; Stephanou EG Sci Total Environ; 2020 Oct; 739():139890. PubMed ID: 32554116 [TBL] [Abstract][Full Text] [Related]
53. Occurrence of brominated disinfection byproducts in the air and water of chlorinated seawater swimming pools. Manasfi T; Temime-Roussel B; Coulomb B; Vassalo L; Boudenne JL Int J Hyg Environ Health; 2017 May; 220(3):583-590. PubMed ID: 28196675 [TBL] [Abstract][Full Text] [Related]
54. Blood and breath analyses as biological indicators of exposure to trihalomethanes in indoor swimming pools. Aggazzotti G; Fantuzzi G; Righi E; Predieri G Sci Total Environ; 1998 Jun; 217(1-2):155-63. PubMed ID: 9695179 [TBL] [Abstract][Full Text] [Related]
55. Characterization of indoor settled dust and investigation of indoor air quality in different micro-environments. Sahu V; Elumalai SP; Gautam S; Singh NK; Singh P Int J Environ Health Res; 2018 Aug; 28(4):419-431. PubMed ID: 29889552 [TBL] [Abstract][Full Text] [Related]
56. Monitoring of volatile organic compounds in non-residential indoor environments. Bruno P; Caselli M; de Gennaro G; Iacobellis S; Tutino M Indoor Air; 2008 Jun; 18(3):250-6. PubMed ID: 18429995 [TBL] [Abstract][Full Text] [Related]
57. Indoor-outdoor distribution and risk assessment of volatile organic compounds in the atmosphere of industrial and urban areas. Massolo L; Rehwagen M; Porta A; Ronco A; Herbarth O; Mueller A Environ Toxicol; 2010 Aug; 25(4):339-49. PubMed ID: 19449388 [TBL] [Abstract][Full Text] [Related]
58. Assessment of ultrafine particles in Portuguese preschools: levels and exposure doses. Fonseca J; Slezakova K; Morais S; Pereira MC Indoor Air; 2014 Dec; 24(6):618-28. PubMed ID: 24689947 [TBL] [Abstract][Full Text] [Related]
59. Indoor air quality in a training centre used for sports practice. Mazoteras-Pardo V; Losa-Iglesias ME; Casado-Hernández I; Calvo-Lobo C; Morales-Ponce Á; Medrano-Soriano A; Coco-Villanueva S; Becerro-de-Bengoa-Vallejo R PeerJ; 2023; 11():e15298. PubMed ID: 37151296 [TBL] [Abstract][Full Text] [Related]
60. Particulate matter and manganese exposures in Indianapolis, Indiana. Pellizzari ED; Clayton CA; Rodes CE; Mason RE; Piper LL; Fort B; Pfeifer G; Lynam D J Expo Anal Environ Epidemiol; 2001; 11(6):423-40. PubMed ID: 11791160 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]