These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 31885202)

  • 1. R2-P2 rapid-robotic phosphoproteomics enables multidimensional cell signaling studies.
    Leutert M; Rodríguez-Mias RA; Fukuda NK; Villén J
    Mol Syst Biol; 2019 Dec; 15(12):e9021. PubMed ID: 31885202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-Free Quantitative Phosphoproteomics of the Fission Yeast
    Sivakova B; Jurcik J; Lukacova V; Selicky T; Cipakova I; Barath P; Cipak L
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33572424
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of MAPK Substrates Using Quantitative Phosphoproteomics.
    Zhang T; Schneider JD; Zhu N; Chen S
    Methods Mol Biol; 2017; 1578():133-142. PubMed ID: 28220420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid and site-specific deep phosphoproteome profiling by data-independent acquisition without the need for spectral libraries.
    Bekker-Jensen DB; Bernhardt OM; Hogrebe A; Martinez-Val A; Verbeke L; Gandhi T; Kelstrup CD; Reiter L; Olsen JV
    Nat Commun; 2020 Feb; 11(1):787. PubMed ID: 32034161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automated Enrichment of Phosphotyrosine Peptides for High-Throughput Proteomics.
    Chang A; Leutert M; Rodriguez-Mias RA; Villén J
    J Proteome Res; 2023 Jun; 22(6):1868-1880. PubMed ID: 37097255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Validation of regulated protein phosphorylation events in yeast by quantitative mass spectrometry analysis of purified proteins.
    Reiter W; Anrather D; Dohnal I; Pichler P; Veis J; Grøtli M; Posas F; Ammerer G
    Proteomics; 2012 Oct; 12(19-20):3030-43. PubMed ID: 22890988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical challenges translating mass spectrometry-based phosphoproteomics from discovery to clinical applications.
    Iliuk AB; Arrington JV; Tao WA
    Electrophoresis; 2014 Dec; 35(24):3430-40. PubMed ID: 24890697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative phosphoproteomics to characterize signaling networks.
    Rigbolt KT; Blagoev B
    Semin Cell Dev Biol; 2012 Oct; 23(8):863-71. PubMed ID: 22677334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted phosphoproteomics of insulin signaling using data-independent acquisition mass spectrometry.
    Parker BL; Yang G; Humphrey SJ; Chaudhuri R; Ma X; Peterman S; James DE
    Sci Signal; 2015 Jun; 8(380):rs6. PubMed ID: 26060331
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput and high-sensitivity phosphoproteomics with the EasyPhos platform.
    Humphrey SJ; Karayel O; James DE; Mann M
    Nat Protoc; 2018 Sep; 13(9):1897-1916. PubMed ID: 30190555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving Phosphoproteomics Profiling Using Data-Independent Mass Spectrometry.
    Srinivasan A; Sing JC; Gingras AC; Röst HL
    J Proteome Res; 2022 Aug; 21(8):1789-1799. PubMed ID: 35877786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review on recent trends in the phosphoproteomics workflow. From sample preparation to data analysis.
    Urban J
    Anal Chim Acta; 2022 Mar; 1199():338857. PubMed ID: 35227377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing the global kinome and phosphoproteome in Chlamydomonas reinhardtii via sequential enrichment and quantitative proteomics.
    Werth EG; McConnell EW; Gilbert TS; Couso Lianez I; Perez CA; Manley CK; Graves LM; Umen JG; Hicks LM
    Plant J; 2017 Jan; 89(2):416-426. PubMed ID: 27671103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphoproteomics in cancer.
    Harsha HC; Pandey A
    Mol Oncol; 2010 Dec; 4(6):482-95. PubMed ID: 20937571
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphotyrosine-based-phosphoproteomics scaled-down to biopsy level for analysis of individual tumor biology and treatment selection.
    Labots M; van der Mijn JC; Beekhof R; Piersma SR; de Goeij-de Haas RR; Pham TV; Knol JC; Dekker H; van Grieken NCT; Verheul HMW; Jiménez CR
    J Proteomics; 2017 Jun; 162():99-107. PubMed ID: 28442448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent developments in mass spectrometry-based quantitative phosphoproteomics.
    Smith JC; Figeys D
    Biochem Cell Biol; 2008 Apr; 86(2):137-48. PubMed ID: 18443627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepPhospho accelerates DIA phosphoproteome profiling through in silico library generation.
    Lou R; Liu W; Li R; Li S; He X; Shui W
    Nat Commun; 2021 Nov; 12(1):6685. PubMed ID: 34795227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphoproteomic analysis of protein kinase C signaling in Saccharomyces cerevisiae reveals Slt2 mitogen-activated protein kinase (MAPK)-dependent phosphorylation of eisosome core components.
    Mascaraque V; Hernáez ML; Jiménez-Sánchez M; Hansen R; Gil C; Martín H; Cid VJ; Molina M
    Mol Cell Proteomics; 2013 Mar; 12(3):557-74. PubMed ID: 23221999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in enrichment and separation strategies for mass spectrometry-based phosphoproteomics.
    Yang C; Zhong X; Li L
    Electrophoresis; 2014 Dec; 35(24):3418-29. PubMed ID: 24687451
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis of cell signaling and drug action via mass spectrometry-based systems level phosphoproteomics.
    Tedford NC; Hall AB; Graham JR; Murphy CE; Gordon NF; Radding JA
    Proteomics; 2009 Mar; 9(6):1469-87. PubMed ID: 19294625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.