BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31885383)

  • 1. Pancreatic Tissue-Derived Extracellular Matrix Bioink for Printing 3D Cell-Laden Pancreatic Tissue Constructs.
    Kim J; Kim M; Hwang DG; Shim IK; Kim SC; Jang J
    J Vis Exp; 2019 Dec; (154):. PubMed ID: 31885383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D cell printing of islet-laden pancreatic tissue-derived extracellular matrix bioink constructs for enhancing pancreatic functions.
    Kim J; Shim IK; Hwang DG; Lee YN; Kim M; Kim H; Kim SW; Lee S; Kim SC; Cho DW; Jang J
    J Mater Chem B; 2019 Mar; 7(10):1773-1781. PubMed ID: 32254919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Cell Printing of Functional Skeletal Muscle Constructs Using Skeletal Muscle-Derived Bioink.
    Choi YJ; Kim TG; Jeong J; Yi HG; Park JW; Hwang W; Cho DW
    Adv Healthc Mater; 2016 Oct; 5(20):2636-2645. PubMed ID: 27529631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioprinting of 3D Tissue Models Using Decellularized Extracellular Matrix Bioink.
    Pati F; Cho DW
    Methods Mol Biol; 2017; 1612():381-390. PubMed ID: 28634957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyaluronic acid methacrylate/pancreatic extracellular matrix as a potential 3D printing bioink for constructing islet organoids.
    Wang D; Guo Y; Zhu J; Liu F; Xue Y; Huang Y; Zhu B; Wu D; Pan H; Gong T; Lu Y; Yang Y; Wang Z
    Acta Biomater; 2023 Jul; 165():86-101. PubMed ID: 35803504
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A 3D bioprinted hybrid encapsulation system for delivery of human pluripotent stem cell-derived pancreatic islet-like aggregates.
    Hwang DG; Jo Y; Kim M; Yong U; Cho S; Choi YM; Kim J; Jang J
    Biofabrication; 2021 Oct; 14(1):. PubMed ID: 34479233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of Liver Decellularized Extracellular Matrix Bioink for Three-Dimensional Cell Printing-Based Liver Tissue Engineering.
    Lee H; Han W; Kim H; Ha DH; Jang J; Kim BS; Cho DW
    Biomacromolecules; 2017 Apr; 18(4):1229-1237. PubMed ID: 28277649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink.
    Pati F; Jang J; Ha DH; Won Kim S; Rhie JW; Shim JH; Kim DH; Cho DW
    Nat Commun; 2014 Jun; 5():3935. PubMed ID: 24887553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A 3D cell printed muscle construct with tissue-derived bioink for the treatment of volumetric muscle loss.
    Choi YJ; Jun YJ; Kim DY; Yi HG; Chae SH; Kang J; Lee J; Gao G; Kong JS; Jang J; Chung WK; Rhie JW; Cho DW
    Biomaterials; 2019 Jun; 206():160-169. PubMed ID: 30939408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a Coaxial 3D Printing Platform for Biofabrication of Implantable Islet-Containing Constructs.
    Liu X; Carter SD; Renes MJ; Kim J; Rojas-Canales DM; Penko D; Angus C; Beirne S; Drogemuller CJ; Yue Z; Coates PT; Wallace GG
    Adv Healthc Mater; 2019 Apr; 8(7):e1801181. PubMed ID: 30633852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feasibility of Bioprinting with a Modified Desktop 3D Printer.
    Goldstein TA; Epstein CJ; Schwartz J; Krush A; Lagalante DJ; Mercadante KP; Zeltsman D; Smith LP; Grande DA
    Tissue Eng Part C Methods; 2016 Dec; 22(12):1071-1076. PubMed ID: 27819188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ECM Based Bioink for Tissue Mimetic 3D Bioprinting.
    Nam SY; Park SH
    Adv Exp Med Biol; 2018; 1064():335-353. PubMed ID: 30471042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue-Specific Decellularized Extracellular Matrix Bioinks for Musculoskeletal Tissue Regeneration and Modeling Using 3D Bioprinting Technology.
    Park W; Gao G; Cho DW
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360604
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of a Bioink Containing Decellularized Spinal Cord Tissue for 3D Bioprinting.
    Santos MGD; França FS; Prestes JP; Teixeira C; Sommer LC; Sperling LE; Pranke P
    Tissue Eng Part A; 2024 Jan; 30(1-2):61-74. PubMed ID: 37772706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioprinted hASC-laden cell constructs with mechanically stable and cell alignment cue for tenogenic differentiation.
    Kim D; Kim G
    Biofabrication; 2023 Jul; 15(4):. PubMed ID: 37442127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of Bioink from Decellularized Tendon Extracellular Matrix for 3D Bioprinting.
    Toprakhisar B; Nadernezhad A; Bakirci E; Khani N; Skvortsov GA; Koc B
    Macromol Biosci; 2018 Oct; 18(10):e1800024. PubMed ID: 30019414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D cell-printing of biocompatible and functional meniscus constructs using meniscus-derived bioink.
    Chae S; Lee SS; Choi YJ; Hong DH; Gao G; Wang JH; Cho DW
    Biomaterials; 2021 Jan; 267():120466. PubMed ID: 33130320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Photo-Crosslinkable Kidney ECM-Derived Bioink Accelerates Renal Tissue Formation.
    Ali M; Pr AK; Yoo JJ; Zahran F; Atala A; Lee SJ
    Adv Healthc Mater; 2019 Apr; 8(7):e1800992. PubMed ID: 30725520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioprinting 3D Human Induced Pluripotent Stem Cell Constructs for Multilineage Tissue Engineering and Modeling.
    Crook JM; Tomaskovic-Crook E
    Methods Mol Biol; 2020; 2140():251-258. PubMed ID: 32207118
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone-derived dECM/alginate bioink for fabricating a 3D cell-laden mesh structure for bone tissue engineering.
    Lee J; Hong J; Kim W; Kim GH
    Carbohydr Polym; 2020 Dec; 250():116914. PubMed ID: 33049834
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.