These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31885525)

  • 21. Constrained motion control of flexible robot manipulators based on recurrent neural networks.
    Tian L; Wang J; Mao Z
    IEEE Trans Syst Man Cybern B Cybern; 2004 Jun; 34(3):1541-52. PubMed ID: 15484923
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Repeatable Motion Scheme for Kinematic Control of Redundant Manipulators.
    Ying K; Qingqing T; Ruiyang Z; Lv Y
    Comput Intell Neurosci; 2019; 2019():5426986. PubMed ID: 31641347
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Recurrent Neural-Network-Based Real-Time Dynamic Model for Soft Continuum Manipulators.
    Tariverdi A; Venkiteswaran VK; Richter M; Elle OJ; Tørresen J; Mathiassen K; Misra S; Martinsen ØG
    Front Robot AI; 2021; 8():631303. PubMed ID: 33869294
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hybrid Orientation and Position Collaborative Motion Generation Scheme for a Multiple Mobile Redundant Manipulator System Synthesized by a Recurrent Neural Network.
    Ren X; Guo J; Chen S; Deng X; Zhang Z
    IEEE Trans Cybern; 2024 Oct; 54(10):6035-6047. PubMed ID: 39106132
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two recurrent neural networks for local joint torque optimization of kinematically redundant manipulators.
    Tang WS; Wang J
    IEEE Trans Syst Man Cybern B Cybern; 2000; 30(1):120-8. PubMed ID: 18244734
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An efficient neural network approach to dynamic robot motion planning.
    Yang SX; Meng M
    Neural Netw; 2000 Mar; 13(2):143-8. PubMed ID: 10935758
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toward coordinated planning and hierarchical optimization control for highly redundant mobile manipulator.
    Sayar E; Gao X; Hu Y; Chen G; Knoll A
    ISA Trans; 2024 Mar; 146():16-28. PubMed ID: 38228436
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Collision-Free Compliance Control for Redundant Manipulators: An Optimization Case.
    Zhou X; Xu Z; Li S
    Front Neurorobot; 2019; 13():50. PubMed ID: 31396070
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Trajectory Analysis of 6-DOF Industrial Robot Manipulators by Using Artificial Neural Networks.
    Çetinkaya MB; Yildirim K; Yildirim Ş
    Sensors (Basel); 2024 Jul; 24(13):. PubMed ID: 39001195
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Neural Network Model-Based Control for Manipulator: An Autoencoder Perspective.
    Li Z; Li S
    IEEE Trans Neural Netw Learn Syst; 2023 Jun; 34(6):2854-2868. PubMed ID: 34520370
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Trajectory Planning of Robot Manipulator Based on RBF Neural Network.
    Song Q; Li S; Bai Q; Yang J; Zhang A; Zhang X; Zhe L
    Entropy (Basel); 2021 Sep; 23(9):. PubMed ID: 34573832
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Design and analysis of a general recurrent neural network model for time-varying matrix inversion.
    Zhang Y; Ge SS
    IEEE Trans Neural Netw; 2005 Nov; 16(6):1477-90. PubMed ID: 16342489
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A recurrent neural network for minimum infinity-norm kinematic control of redundant manipulators with an improved problem formulation and reduced architecture complexity.
    Tang WS; Wang J
    IEEE Trans Syst Man Cybern B Cybern; 2001; 31(1):98-105. PubMed ID: 18244770
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On a Finitely Activated Terminal RNN Approach to Time-Variant Problem Solving.
    Sun M; Zhang Y; Wu Y; He X
    IEEE Trans Neural Netw Learn Syst; 2022 Dec; 33(12):7289-7302. PubMed ID: 34106866
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fixed-Time Recurrent NN Learning Control of Uncertain Robotic Manipulators with Time-Varying Constraints: Experimental Verification.
    Shi Q; Li C; He R; Zhu X; Duan X
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420780
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic Neural Network for Bicriteria Weighted Control of Robot Manipulators.
    Liu M; He L; Shang M
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):4570-4583. PubMed ID: 34623282
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Novel recurrent neural network for modelling biological networks: oscillatory p53 interaction dynamics.
    Ling H; Samarasinghe S; Kulasiri D
    Biosystems; 2013 Dec; 114(3):191-205. PubMed ID: 24012741
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep Recurrent Neural Networks Based Obstacle Avoidance Control for Redundant Manipulators.
    Xu Z; Zhou X; Li S
    Front Neurorobot; 2019; 13():47. PubMed ID: 31333442
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sparse signal reconstruction via recurrent neural networks with hyperbolic tangent function.
    Wen H; He X; Huang T
    Neural Netw; 2022 Sep; 153():1-12. PubMed ID: 35687969
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Punishment Mechanism-Combined Recurrent Neural Network to Solve Motion-Planning Problem of Redundant Robot Manipulators.
    Zhang Z; Yang S; Zheng L
    IEEE Trans Cybern; 2023 Apr; 53(4):2177-2185. PubMed ID: 34623289
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.