These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 31885563)

  • 21. Anti-Inflammatory Role of MicroRNA-146a in the Pathogenesis of Diabetic Nephropathy.
    Bhatt K; Lanting LL; Jia Y; Yadav S; Reddy MA; Magilnick N; Boldin M; Natarajan R
    J Am Soc Nephrol; 2016 Aug; 27(8):2277-88. PubMed ID: 26647423
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diabetic nephropathy: The regulatory interplay between epigenetics and microRNAs.
    Sankrityayan H; Kulkarni YA; Gaikwad AB
    Pharmacol Res; 2019 Mar; 141():574-585. PubMed ID: 30695734
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetics and Epigenetics of Diabetic Nephropathy.
    Liu R; Lee K; He JC
    Kidney Dis (Basel); 2015 May; 1(1):42-51. PubMed ID: 27536664
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Urinary Exosomal miRNA Signature in Type II Diabetic Nephropathy Patients.
    Delić D; Eisele C; Schmid R; Baum P; Wiech F; Gerl M; Zimdahl H; Pullen SS; Urquhart R
    PLoS One; 2016; 11(3):e0150154. PubMed ID: 26930277
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Advances in the role of autoantibodies in diabetic nephropathy: Review].
    Zhou Z; Luo R; Wan Z; Kuang H; Lyu J
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2020 Feb; 36(2):175-179. PubMed ID: 32314716
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Downregulation of miR-30c promotes renal fibrosis by target CTGF in diabetic nephropathy.
    Wang J; Duan L; Guo T; Gao Y; Tian L; Liu J; Wang S; Yang J
    J Diabetes Complications; 2016 Apr; 30(3):406-14. PubMed ID: 26775556
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pathogenesis of diabetic nephropathy.
    Raptis AE; Viberti G
    Exp Clin Endocrinol Diabetes; 2001; 109 Suppl 2():S424-37. PubMed ID: 11460589
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An Overview of the Posttranslational Modifications and Related Molecular Mechanisms in Diabetic Nephropathy.
    Cao Y; Yang Z; Chen Y; Jiang S; Wu Z; Ding B; Yang Y; Jin Z; Tang H
    Front Cell Dev Biol; 2021; 9():630401. PubMed ID: 34124032
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interleukin-22 ameliorated renal injury and fibrosis in diabetic nephropathy through inhibition of NLRP3 inflammasome activation.
    Wang S; Li Y; Fan J; Zhang X; Luan J; Bian Q; Ding T; Wang Y; Wang Z; Song P; Cui D; Mei X; Ju D
    Cell Death Dis; 2017 Jul; 8(7):e2937. PubMed ID: 28726774
    [TBL] [Abstract][Full Text] [Related]  

  • 30. LncRNA TUG1 ameliorates diabetic nephropathy by inhibiting miR-21 to promote TIMP3-expression.
    Wang F; Gao X; Zhang R; Zhao P; Sun Y; Li C
    Int J Clin Exp Pathol; 2019; 12(3):717-729. PubMed ID: 31933879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The Inhibitory Effect of Rapamycin on Toll Like Receptor 4 and Interleukin 17 in the Early Stage of Rat Diabetic Nephropathy.
    Yu R; Bo H; Villani V; Spencer PJ; Fu P
    Kidney Blood Press Res; 2016; 41(1):55-69. PubMed ID: 26849067
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Emerging Roles of microRNAs as Biomarkers and Therapeutic Targets for Diabetic Neuropathy.
    Fan B; Chopp M; Zhang ZG; Liu XS
    Front Neurol; 2020; 11():558758. PubMed ID: 33192992
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent advances in understanding the biochemical and molecular mechanism of diabetic nephropathy.
    Sun YM; Su Y; Li J; Wang LF
    Biochem Biophys Res Commun; 2013 Apr; 433(4):359-61. PubMed ID: 23541575
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Diagnostic biomarkers of diabetic nephropathy.
    Ito H; Fujita H; Takahashi T
    Expert Opin Med Diagn; 2008 Feb; 2(2):161-9. PubMed ID: 23485136
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insulin resistance in diabetic nephropathy--cause or consequence?
    Svensson M; Eriksson JW
    Diabetes Metab Res Rev; 2006; 22(5):401-10. PubMed ID: 16703644
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Review of Herbal Traditional Chinese Medicine for the Treatment of Diabetic Nephropathy.
    Sun GD; Li CY; Cui WP; Guo QY; Dong CQ; Zou HB; Liu SJ; Dong WP; Miao LN
    J Diabetes Res; 2016; 2016():5749857. PubMed ID: 26649322
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Angiotensin II receptor blocker valsartan ameliorates cardiac fibrosis partly by inhibiting miR-21 expression in diabetic nephropathy mice.
    Wang J; Duan L; Gao Y; Zhou S; Liu Y; Wei S; An S; Liu J; Tian L; Wang S
    Mol Cell Endocrinol; 2018 Sep; 472():149-158. PubMed ID: 29233785
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lessons learned from studies of the natural history of diabetic nephropathy in young type 1 diabetic patients.
    Steinke JM; Mauer M;
    Pediatr Endocrinol Rev; 2008 Aug; 5 Suppl 4():958-63. PubMed ID: 18806710
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Silencing of long noncoding RNA XIST protects against renal interstitial fibrosis in diabetic nephropathy via microRNA-93-5p-mediated inhibition of CDKN1A.
    Yang J; Shen Y; Yang X; Long Y; Chen S; Lin X; Dong R; Yuan J
    Am J Physiol Renal Physiol; 2019 Nov; 317(5):F1350-F1358. PubMed ID: 31545928
    [TBL] [Abstract][Full Text] [Related]  

  • 40. LncRNA Blnc1 expression and its effect on renal fibrosis in diabetic nephropathy.
    Feng X; Zhao J; Ding J; Shen X; Zhou J; Xu Z
    Am J Transl Res; 2019; 11(9):5664-5672. PubMed ID: 31632538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.