These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
330 related articles for article (PubMed ID: 31885832)
1. Machine Learning Models for Analysis of Vital Signs Dynamics: A Case for Sepsis Onset Prediction. Bloch E; Rotem T; Cohen J; Singer P; Aperstein Y J Healthc Eng; 2019; 2019():5930379. PubMed ID: 31885832 [TBL] [Abstract][Full Text] [Related]
2. Multicentre validation of a sepsis prediction algorithm using only vital sign data in the emergency department, general ward and ICU. Mao Q; Jay M; Hoffman JL; Calvert J; Barton C; Shimabukuro D; Shieh L; Chettipally U; Fletcher G; Kerem Y; Zhou Y; Das R BMJ Open; 2018 Jan; 8(1):e017833. PubMed ID: 29374661 [TBL] [Abstract][Full Text] [Related]
3. A Time-Phased Machine Learning Model for Real-Time Prediction of Sepsis in Critical Care. Li X; Xu X; Xie F; Xu X; Sun Y; Liu X; Jia X; Kang Y; Xie L; Wang F; Xie G Crit Care Med; 2020 Oct; 48(10):e884-e888. PubMed ID: 32931194 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of a machine learning algorithm for up to 48-hour advance prediction of sepsis using six vital signs. Barton C; Chettipally U; Zhou Y; Jiang Z; Lynn-Palevsky A; Le S; Calvert J; Das R Comput Biol Med; 2019 Jun; 109():79-84. PubMed ID: 31035074 [TBL] [Abstract][Full Text] [Related]
5. An intelligent warning model for early prediction of cardiac arrest in sepsis patients. Layeghian Javan S; Sepehri MM; Layeghian Javan M; Khatibi T Comput Methods Programs Biomed; 2019 Sep; 178():47-58. PubMed ID: 31416562 [TBL] [Abstract][Full Text] [Related]
6. An Interpretable Machine Learning Model for Accurate Prediction of Sepsis in the ICU. Nemati S; Holder A; Razmi F; Stanley MD; Clifford GD; Buchman TG Crit Care Med; 2018 Apr; 46(4):547-553. PubMed ID: 29286945 [TBL] [Abstract][Full Text] [Related]
7. Machine learning for prediction of septic shock at initial triage in emergency department. Kim J; Chang H; Kim D; Jang DH; Park I; Kim K J Crit Care; 2020 Feb; 55():163-170. PubMed ID: 31734491 [TBL] [Abstract][Full Text] [Related]
8. Predicting in-hospital mortality in ICU patients with sepsis using gradient boosting decision tree. Li K; Shi Q; Liu S; Xie Y; Liu J Medicine (Baltimore); 2021 May; 100(19):e25813. PubMed ID: 34106618 [TBL] [Abstract][Full Text] [Related]
9. A Model-Based Machine Learning Approach to Probing Autonomic Regulation From Nonstationary Vital-Sign Time Series. Lehman LH; Mark RG; Nemati S IEEE J Biomed Health Inform; 2018 Jan; 22(1):56-66. PubMed ID: 27959829 [TBL] [Abstract][Full Text] [Related]
10. Predicting the Onset of Sepsis Using Vital Signs Data: A Machine Learning Approach. Tran A; Topp R; Tarshizi E; Shao A Clin Nurs Res; 2023 Sep; 32(7):1000-1009. PubMed ID: 37365807 [TBL] [Abstract][Full Text] [Related]
11. LiSep LSTM: A Machine Learning Algorithm for Early Detection of Septic Shock. Fagerström J; Bång M; Wilhelms D; Chew MS Sci Rep; 2019 Oct; 9(1):15132. PubMed ID: 31641162 [TBL] [Abstract][Full Text] [Related]
12. Machine Learning for Early Prediction of Sepsis in Intensive Care Unit (ICU) Patients. Alanazi A; Aldakhil L; Aldhoayan M; Aldosari B Medicina (Kaunas); 2023 Jul; 59(7):. PubMed ID: 37512087 [No Abstract] [Full Text] [Related]
13. Prediction of mortality in Intensive Care Units: a multivariate feature selection. Monteiro F; Meloni F; Baranauskas JA; Macedo AA J Biomed Inform; 2020 Jul; 107():103456. PubMed ID: 32454242 [TBL] [Abstract][Full Text] [Related]
14. Early sepsis detection in critical care patients using multiscale blood pressure and heart rate dynamics. Shashikumar SP; Stanley MD; Sadiq I; Li Q; Holder A; Clifford GD; Nemati S J Electrocardiol; 2017; 50(6):739-743. PubMed ID: 28916175 [TBL] [Abstract][Full Text] [Related]
15. Graph Convolutional Networks-Based Noisy Data Imputation in Electronic Health Record. Lee BT; Kwon OY; Park H; Cho KJ; Kwon JM; Lee Y Crit Care Med; 2020 Nov; 48(11):e1106-e1111. PubMed ID: 32947466 [TBL] [Abstract][Full Text] [Related]
16. Adding Continuous Vital Sign Information to Static Clinical Data Improves the Prediction of Length of Stay After Intubation: A Data-Driven Machine Learning Approach. Castiñeira D; Schlosser KR; Geva A; Rahmani AR; Fiore G; Walsh BK; Smallwood CD; Arnold JH; Santillana M Respir Care; 2020 Sep; 65(9):1367-1377. PubMed ID: 32879034 [TBL] [Abstract][Full Text] [Related]
17. Prediction and early detection of delirium in the intensive care unit by using heart rate variability and machine learning. Oh J; Cho D; Park J; Na SH; Kim J; Heo J; Shin CS; Kim JJ; Park JY; Lee B Physiol Meas; 2018 Mar; 39(3):035004. PubMed ID: 29376502 [TBL] [Abstract][Full Text] [Related]
18. Machine learning combining CT findings and clinical parameters improves prediction of length of stay and ICU admission in torso trauma. Staziaki PV; Wu D; Rayan JC; Santo IDO; Nan F; Maybury A; Gangasani N; Benador I; Saligrama V; Scalera J; Anderson SW Eur Radiol; 2021 Jul; 31(7):5434-5441. PubMed ID: 33475772 [TBL] [Abstract][Full Text] [Related]
19. Predicting Intensive Care Unit Length of Stay and Mortality Using Patient Vital Signs: Machine Learning Model Development and Validation. Alghatani K; Ammar N; Rezgui A; Shaban-Nejad A JMIR Med Inform; 2021 May; 9(5):e21347. PubMed ID: 33949961 [TBL] [Abstract][Full Text] [Related]
20. A customised down-sampling machine learning approach for sepsis prediction. Wu Q; Ye F; Gu Q; Shao F; Long X; Zhan Z; Zhang J; He J; Zhang Y; Xiao Q Int J Med Inform; 2024 Apr; 184():105365. PubMed ID: 38350181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]