These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 31886614)

  • 1. Recent Strategies in Fabrication of Gradient Hydrogels for Tissue Engineering Applications.
    Jo H; Yoon M; Gajendiran M; Kim K
    Macromol Biosci; 2020 Mar; 20(3):e1900300. PubMed ID: 31886614
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment.
    Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W
    Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D bioprinting of hydrogel-based biomimetic microenvironments.
    Luo Y; Wei X; Huang P
    J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1695-1705. PubMed ID: 30508322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioprintable tough hydrogels for tissue engineering applications.
    Dorishetty P; Dutta NK; Choudhury NR
    Adv Colloid Interface Sci; 2020 Jul; 281():102163. PubMed ID: 32388202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering 3D Hydrogels for Personalized In Vitro Human Tissue Models.
    Liaw CY; Ji S; Guvendiren M
    Adv Healthc Mater; 2018 Feb; 7(4):. PubMed ID: 29345429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomacromolecules for Tissue Engineering: Emerging Biomimetic Strategies.
    Guo JL; Kim YS; Mikos AG
    Biomacromolecules; 2019 Aug; 20(8):2904-2912. PubMed ID: 31282658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application.
    Jiang L; Wang Y; Liu Z; Ma C; Yan H; Xu N; Gang F; Wang X; Zhao L; Sun X
    Tissue Eng Part B Rev; 2019 Oct; 25(5):398-411. PubMed ID: 31115274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cutting-edge progress and challenges in stimuli responsive hydrogel microenvironment for success in tissue engineering today.
    Abdollahiyan P; Baradaran B; de la Guardia M; Oroojalian F; Mokhtarzadeh A
    J Control Release; 2020 Dec; 328():514-531. PubMed ID: 32956710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current Status of Development and Intellectual Properties of Biomimetic Medical Materials.
    Gopinathan J; Noh I
    Adv Exp Med Biol; 2018; 1064():377-399. PubMed ID: 30471044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decellularized Hydrogels in Bone Tissue Engineering: A Topical Review.
    Pacifici A; Laino L; Gargari M; Guzzo F; Velandia Luz A; Polimeni A; Pacifici L
    Int J Med Sci; 2018; 15(5):492-497. PubMed ID: 29559838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dipeptide Self-Assembled Hydrogels with Tunable Mechanical Properties and Degradability for 3D Bioprinting.
    Jian H; Wang M; Dong Q; Li J; Wang A; Li X; Ren P; Bai S
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46419-46426. PubMed ID: 31769283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perlecan domain I gradients establish stable biomimetic heparin binding growth factor gradients for cell migration in hydrogels.
    Hubka KM; Carson DD; Harrington DA; Farach-Carson MC
    Acta Biomater; 2019 Oct; 97():385-398. PubMed ID: 31351252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering Enriched Microenvironments with Gradients of Platelet Lysate in Hydrogel Fibers.
    Santo VE; Babo P; Amador M; Correia C; Cunha B; Coutinho DF; Neves NM; Mano JF; Reis RL; Gomes ME
    Biomacromolecules; 2016 Jun; 17(6):1985-97. PubMed ID: 27203709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering zonal cartilage through bioprinting collagen type II hydrogel constructs with biomimetic chondrocyte density gradient.
    Ren X; Wang F; Chen C; Gong X; Yin L; Yang L
    BMC Musculoskelet Disord; 2016 Jul; 17():301. PubMed ID: 27439428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: A review.
    Hernández-González AC; Téllez-Jurado L; Rodríguez-Lorenzo LM
    Carbohydr Polym; 2020 Feb; 229():115514. PubMed ID: 31826429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
    Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioprinting of 3D hydrogels.
    Stanton MM; Samitier J; Sánchez S
    Lab Chip; 2015 Aug; 15(15):3111-5. PubMed ID: 26066320
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controllable fabrication of hydroxybutyl chitosan/oxidized chondroitin sulfate hydrogels by 3D bioprinting technique for cartilage tissue engineering.
    Li C; Wang K; Zhou X; Li T; Xu Y; Qiang L; Peng M; Xu Y; Xie L; He C; Wang B; Wang J
    Biomed Mater; 2019 Jan; 14(2):025006. PubMed ID: 30557856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications.
    Vedadghavami A; Minooei F; Mohammadi MH; Khetani S; Rezaei Kolahchi A; Mashayekhan S; Sanati-Nezhad A
    Acta Biomater; 2017 Oct; 62():42-63. PubMed ID: 28736220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering.
    Kim HD; Amirthalingam S; Kim SL; Lee SS; Rangasamy J; Hwang NS
    Adv Healthc Mater; 2017 Dec; 6(23):. PubMed ID: 29171714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.