BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31886645)

  • 1. Silicon Electrochemistry in Molten Salts.
    Juzeliu Nas E; Fray DJ
    Chem Rev; 2020 Feb; 120(3):1690-1709. PubMed ID: 31886645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Advances in Electrochemical-Based Silicon Production Technologies with Reduced Carbon Emission.
    Tian F; Pang Z; Hu S; Zhang X; Wang F; Nie W; Xia X; Li G; Hsu HY; Xu Q; Zou X; Ji L; Lu X
    Research (Wash D C); 2023; 6():0142. PubMed ID: 37214200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The electrochemical reduction processes of solid compounds in high temperature molten salts.
    Xiao W; Wang D
    Chem Soc Rev; 2014 May; 43(10):3215-28. PubMed ID: 24535552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrodeposition of crystalline silicon films from silicon dioxide for low-cost photovoltaic applications.
    Zou X; Ji L; Ge J; Sadoway DR; Yu ET; Bard AJ
    Nat Commun; 2019 Dec; 10(1):5772. PubMed ID: 31852891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-Temperature Molten-Salt Production of Silicon Nanowires by the Electrochemical Reduction of CaSiO
    Dong Y; Slade T; Stolt MJ; Li L; Girard SN; Mai L; Jin S
    Angew Chem Int Ed Engl; 2017 Nov; 56(46):14453-14457. PubMed ID: 28952181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Facile synthesis of freestanding Si nanowire arrays by one-step template-free electro-deoxidation of SiO2 in a molten salt.
    Zhao J; Li J; Ying P; Zhang W; Meng L; Li C
    Chem Commun (Camb); 2013 May; 49(40):4477-9. PubMed ID: 23571606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silicate-Mediated Electrolytic Silicon Nanotube from Silica in Molten Salts.
    Jing S; Xiao J; Shen Y; Hong B; Gu D; Xiao W
    Small; 2022 Sep; 18(35):e2203251. PubMed ID: 35934894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrochemical Formation of a p-n Junction on Thin Film Silicon Deposited in Molten Salt.
    Zou X; Ji L; Yang X; Lim T; Yu ET; Bard AJ
    J Am Chem Soc; 2017 Nov; 139(45):16060-16063. PubMed ID: 29095608
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Advances in Photoelectrochemical Applications of Silicon Materials for Solar-to-Chemicals Conversion.
    Zhang D; Shi J; Zi W; Wang P; Liu SF
    ChemSusChem; 2017 Nov; 10(22):4324-4341. PubMed ID: 28977741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward Cost-Effective Manufacturing of Silicon Solar Cells: Electrodeposition of High-Quality Si Films in a CaCl
    Yang X; Ji L; Zou X; Lim T; Zhao J; Yu ET; Bard AJ
    Angew Chem Int Ed Engl; 2017 Nov; 56(47):15078-15082. PubMed ID: 28902971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile and scalable synthesis of silicon nanowires from waste rice husk silica by the molten salt process.
    Choi JH; Kim HK; Jin EM; Seo MW; Cho JS; Kumar RV; Jeong SM
    J Hazard Mater; 2020 Nov; 399():122949. PubMed ID: 32502856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrorefining for direct decarburization of molten iron.
    Judge WD; Paeng J; Azimi G
    Nat Mater; 2022 Oct; 21(10):1130-1136. PubMed ID: 34580434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile electrosynthesis of silicon carbide nanowires from silica/carbon precursors in molten salt.
    Zou X; Ji L; Lu X; Zhou Z
    Sci Rep; 2017 Aug; 7(1):9978. PubMed ID: 28855705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Nanostructuring of Silicon by Electrochemical Alloying/Dealloying in Molten Salts for Improved Lithium Storage.
    Yuan Y; Xiao W; Wang Z; Fray DJ; Jin X
    Angew Chem Int Ed Engl; 2018 Nov; 57(48):15743-15748. PubMed ID: 30302908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molten salts and energy related materials.
    Fray D
    Faraday Discuss; 2016 Aug; 190():11-34. PubMed ID: 27276650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of Si Hollow Structures as Promising Anode Materials through Reduction of Silica in AlCl
    Gao P; Huang X; Zhao Y; Hu X; Cen D; Gao G; Bao Z; Mei Y; Di Z; Wu G
    ACS Nano; 2018 Nov; 12(11):11481-11490. PubMed ID: 30395438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances in sensitized mesoscopic solar cells.
    Grätzel M
    Acc Chem Res; 2009 Nov; 42(11):1788-98. PubMed ID: 19715294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy.
    Peng F; Su Y; Zhong Y; Fan C; Lee ST; He Y
    Acc Chem Res; 2014 Feb; 47(2):612-23. PubMed ID: 24397270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbonaceous materials and their advances as a counter electrode in dye-sensitized solar cells: challenges and prospects.
    Kouhnavard M; Ludin NA; Ghaffari BV; Sopian K; Ikeda S
    ChemSusChem; 2015 May; 8(9):1510-33. PubMed ID: 25925421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy Storage Materials from Nature through Nanotechnology: A Sustainable Route from Reed Plants to a Silicon Anode for Lithium-Ion Batteries.
    Liu J; Kopold P; van Aken PA; Maier J; Yu Y
    Angew Chem Int Ed Engl; 2015 Aug; 54(33):9632-6. PubMed ID: 26119499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.