These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31886663)

  • 1. Do String-like Cooperative Motions Predict Relaxation Times in Glass-Forming Liquids?
    Hung JH; Simmons DS
    J Phys Chem B; 2020 Jan; 124(1):266-276. PubMed ID: 31886663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does equilibrium polymerization describe the dynamic heterogeneity of glass-forming liquids?
    Douglas JF; Dudowicz J; Freed KF
    J Chem Phys; 2006 Oct; 125(14):144907. PubMed ID: 17042650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. String model for the dynamics of glass-forming liquids.
    PazmiƱo Betancourt BA; Douglas JF; Starr FW
    J Chem Phys; 2014 May; 140(20):204509. PubMed ID: 24880303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Communication: Towards first principles theory of relaxation in supercooled liquids formulated in terms of cooperative motion.
    Freed KF
    J Chem Phys; 2014 Oct; 141(14):141102. PubMed ID: 25318708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relationship of dynamical heterogeneity to the Adam-Gibbs and random first-order transition theories of glass formation.
    Starr FW; Douglas JF; Sastry S
    J Chem Phys; 2013 Mar; 138(12):12A541. PubMed ID: 23556792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing excitations and cooperatively rearranging regions in deeply supercooled liquids.
    Ortlieb L; Ingebrigtsen TS; Hallett JE; Turci F; Royall CP
    Nat Commun; 2023 May; 14(1):2621. PubMed ID: 37147284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Power law relationship between diffusion coefficients in multi-component glass forming liquids.
    Parmar ADS; Sengupta S; Sastry S
    Eur Phys J E Soft Matter; 2018 Aug; 41(8):90. PubMed ID: 30078172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluctuation Effects in the Adam-Gibbs Model of Cooperative Relaxation.
    Hutchison C; Bhattarai A; Wang A; Mohanty U
    J Phys Chem B; 2019 Sep; 123(38):8086-8090. PubMed ID: 31513406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatially heterogeneous dynamics and the Adam-Gibbs relation in the Dzugutov liquid.
    Gebremichael Y; Vogel M; Bergroth MN; Starr FW; Glotzer SC
    J Phys Chem B; 2005 Aug; 109(31):15068-79. PubMed ID: 16852907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of string-like collective atomic motion on diffusion and structural relaxation in glass forming Cu-Zr alloys.
    Zhang H; Zhong C; Douglas JF; Wang X; Cao Q; Zhang D; Jiang JZ
    J Chem Phys; 2015 Apr; 142(16):164506. PubMed ID: 25933773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of cooperatively rearranging regions in a binary glass former.
    Mizuguchi T; Odagaki T
    J Phys Condens Matter; 2023 May; 35(33):. PubMed ID: 37172593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gaussian excitations model for glass-former dynamics and thermodynamics.
    Matyushov DV; Angell CA
    J Chem Phys; 2007 Mar; 126(9):094501. PubMed ID: 17362109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adam-Gibbs relation for glass-forming liquids in two, three, and four dimensions.
    Sengupta S; Karmakar S; Dasgupta C; Sastry S
    Phys Rev Lett; 2012 Aug; 109(9):095705. PubMed ID: 23002857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clustering and cooperative dynamics in a reactive system.
    Corezzi S; Fioretto D; Kenny JM
    Phys Rev Lett; 2005 Feb; 94(6):065702. PubMed ID: 15783749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Dynamically Correlated Network Model for the Collective Dynamics in Glass-Forming Molecular Liquids and Polymers.
    Sasaki T; Tsuzuki Y; Nakane T
    Polymers (Basel); 2021 Oct; 13(19):. PubMed ID: 34641239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Clusters of mobile molecules in supercooled water.
    Giovambattista N; Buldyrev SV; Stanley HE; Starr FW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 1):011202. PubMed ID: 16089946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamically correlated regions and configurational entropy in supercooled liquids.
    Capaccioli S; Ruocco G; Zamponi F
    J Phys Chem B; 2008 Aug; 112(34):10652-8. PubMed ID: 18671368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Critical dynamics of dimers: implications for the glass transition.
    Das D; Farrell G; Kondev J; Chakraborty B
    J Phys Chem B; 2005 Nov; 109(45):21413-8. PubMed ID: 16853778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growing length and time scales in glass-forming liquids.
    Karmakar S; Dasgupta C; Sastry S
    Proc Natl Acad Sci U S A; 2009 Mar; 106(10):3675-9. PubMed ID: 19234111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entropy theory of polymer glass formation revisited. I. General formulation.
    Dudowicz J; Freed KF; Douglas JF
    J Chem Phys; 2006 Feb; 124(6):64901. PubMed ID: 16483238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.