These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31886663)

  • 21. Route to calculate the length scale for the glass transition in polymers.
    Cangialosi D; Alegría A; Colmenero J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011514. PubMed ID: 17677457
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Connection between Adam-Gibbs theory and spatially heterogeneous dynamics.
    Giovambattista N; Buldyrev SV; Starr FW; Stanley HE
    Phys Rev Lett; 2003 Feb; 90(8):085506. PubMed ID: 12633440
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Adam-Gibbs equation and the out-of-equilibrium alpha relaxation of glass forming systems.
    Goitiandia L; Alegria A
    J Chem Phys; 2004 Jul; 121(3):1636-43. PubMed ID: 15260712
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the Adam-Gibbs-Kirkpatrick-Thirumalai-Wolynes scenario for the viscosity increase in glasses.
    Bouchaud JP; Biroli G
    J Chem Phys; 2004 Oct; 121(15):7347-54. PubMed ID: 15473805
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Correlation between configurational entropy, excess entropy, and ion dynamics in imidazolium-based ionic liquids: Test of the Adam-Gibbs model.
    Cheng S; Wojnarowska Z; Musiał M; Paluch M
    J Chem Phys; 2021 Jan; 154(4):044502. PubMed ID: 33514081
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fragility of glass-forming polymer liquids.
    Dudowicz J; Freed KF; Douglas JF
    J Phys Chem B; 2005 Nov; 109(45):21350-6. PubMed ID: 16853769
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Does the Adam-Gibbs relation hold in simulated supercooled liquids?
    Ozawa M; Scalliet C; Ninarello A; Berthier L
    J Chem Phys; 2019 Aug; 151(8):084504. PubMed ID: 31470721
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tuning polymer melt fragility with antiplasticizer additives.
    Riggleman RA; Douglas JF; de Pablo JJ
    J Chem Phys; 2007 Jun; 126(23):234903. PubMed ID: 17600442
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The glass transition of polymers with different side-chain stiffness confined in free-standing thin films.
    Xie SJ; Qian HJ; Lu ZY
    J Chem Phys; 2015 Feb; 142(7):074902. PubMed ID: 25702026
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nonlinear dynamic response of glass-forming liquids to random pinning.
    Kob W; Coslovich D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052305. PubMed ID: 25493794
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relating dynamic free volume to cooperative relaxation in a glass-forming polymer composite.
    McKenzie-Smith T; Douglas JF; Starr FW
    J Chem Phys; 2022 Oct; 157(13):131101. PubMed ID: 36209017
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Length-Scale Dependence of the Stokes-Einstein and Adam-Gibbs Relations in Model Glass Formers.
    Parmar ADS; Sengupta S; Sastry S
    Phys Rev Lett; 2017 Aug; 119(5):056001. PubMed ID: 28949755
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic heterogeneity and collective motion in star polymer melts.
    Fan J; Emamy H; Chremos A; Douglas JF; Starr FW
    J Chem Phys; 2020 Feb; 152(5):054904. PubMed ID: 32035474
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Polymer brushes: a controllable system with adjustable glass transition temperature of fragile glass formers.
    Xie SJ; Qian HJ; Lu ZY
    J Chem Phys; 2014 Jan; 140(4):044901. PubMed ID: 25669577
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Universal Scaling in the Temperature-Dependent Viscous Dynamics of Metallic Glasses.
    Zhang M; Chen Y; Dai LH
    J Phys Chem B; 2021 Apr; 125(13):3419-3425. PubMed ID: 33764771
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamics-Entropy Relationship in Metallic Glasses.
    Cao LL; Wang YJ
    J Phys Chem Lett; 2024 Jan; 15(3):811-816. PubMed ID: 38232179
    [TBL] [Abstract][Full Text] [Related]  

  • 37. String-like collective motion in the α- and β-relaxation of a coarse-grained polymer melt.
    Pazmiño Betancourt BA; Starr FW; Douglas JF
    J Chem Phys; 2018 Mar; 148(10):104508. PubMed ID: 29544276
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Democratic particle motion for metabasin transitions in simple glass formers.
    Appignanesi GA; Rodríguez Fris JA; Montani RA; Kob W
    Phys Rev Lett; 2006 Feb; 96(5):057801. PubMed ID: 16486989
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Localized Excitations and the Morphology of Cooperatively Rearranging Regions in a Colloidal Glass-Forming Liquid.
    Gokhale S; Ganapathy R; Nagamanasa KH; Sood AK
    Phys Rev Lett; 2016 Feb; 116(6):068305. PubMed ID: 26919021
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interfacial mobility scale determines the scale of collective motion and relaxation rate in polymer films.
    Hanakata PZ; Douglas JF; Starr FW
    Nat Commun; 2014 Jun; 5():4163. PubMed ID: 24932594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.