These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 31886667)

  • 1. One-Pot Biocatalytic Transformation of Adipic Acid to 6-Aminocaproic Acid and 1,6-Hexamethylenediamine Using Carboxylic Acid Reductases and Transaminases.
    Fedorchuk TP; Khusnutdinova AN; Evdokimova E; Flick R; Di Leo R; Stogios P; Savchenko A; Yakunin AF
    J Am Chem Soc; 2020 Jan; 142(2):1038-1048. PubMed ID: 31886667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virtual screening of carboxylic acid reductases for biocatalytic synthesis of 6-aminocaproic acid and 1,6-hexamethylenediamine.
    Shi K; Li JM; Zhang ZJ; Chen Q; Xu JH; Yu HL
    Biotechnol Bioeng; 2023 Jul; 120(7):1773-1783. PubMed ID: 37130074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using enzyme cascades in biocatalysis: Highlight on transaminases and carboxylic acid reductases.
    Cutlan R; De Rose S; Isupov MN; Littlechild JA; Harmer NJ
    Biochim Biophys Acta Proteins Proteom; 2020 Feb; 1868(2):140322. PubMed ID: 31740415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocatalytic concepts for synthesizing amine bulk chemicals: recent approaches towards linear and cyclic aliphatic primary amines and ω-substituted derivatives thereof.
    Gröger H
    Appl Microbiol Biotechnol; 2019 Jan; 103(1):83-95. PubMed ID: 30367182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring Bacterial Carboxylate Reductases for the Reduction of Bifunctional Carboxylic Acids.
    Khusnutdinova AN; Flick R; Popovic A; Brown G; Tchigvintsev A; Nocek B; Correia K; Joo JC; Mahadevan R; Yakunin AF
    Biotechnol J; 2017 Nov; 12(11):. PubMed ID: 28762640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biocatalysis enables the scalable conversion of biobased furans into various furfurylamines.
    Giri P; Lim S; Khobragade TP; Pagar AD; Patil MD; Sarak S; Jeon H; Joo S; Goh Y; Jung S; Jang YJ; Choi SB; Kim YC; Kang TJ; Heo YS; Yun H
    Nat Commun; 2024 Jul; 15(1):6371. PubMed ID: 39075048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A facile process for adipic acid production in high yield by oxidation of 1,6-hexanediol using the resting cells of Gluconobacter oxydans.
    Pyo SH; Sayed M; Örn OE; Amorrortu Gallo J; Fernandez Ros N; Hatti-Kaul R
    Microb Cell Fact; 2022 Oct; 21(1):223. PubMed ID: 36307807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-Pot Biocatalytic Route from Alkanes to α,ω-Diamines by Whole-Cell Consortia of Engineered
    Kim YC; Yoo HW; Park BG; Sarak S; Hahn JS; Kim BG; Yun H
    ACS Synth Biol; 2024 Jul; 13(7):2188-2198. PubMed ID: 38912892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Carboxylic Acid Reductases for Biocatalytic Synthesis of Industrial Chemicals.
    Kramer L; Hankore ED; Liu Y; Liu K; Jimenez E; Guo J; Niu W
    Chembiochem; 2018 Jul; 19(13):1452-1460. PubMed ID: 29659112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocatalytic production of adipic acid from glucose using engineered
    Raj K; Partow S; Correia K; Khusnutdinova AN; Yakunin AF; Mahadevan R
    Metab Eng Commun; 2018 Jun; 6():28-32. PubMed ID: 29487800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carboxylic acid reductase enzymes (CARs).
    Winkler M
    Curr Opin Chem Biol; 2018 Apr; 43():23-29. PubMed ID: 29127833
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-Pot Synthesis of Adipic Acid from Guaiacol in
    Suitor JT; Varzandeh S; Wallace S
    ACS Synth Biol; 2020 Sep; 9(9):2472-2476. PubMed ID: 32786923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering and characterization of hybrid carboxylic acid reductases.
    Kramer L; Le X; Hankore ED; Wilson MA; Guo J; Niu W
    J Biotechnol; 2019 Oct; 304():52-56. PubMed ID: 31430496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a Thermodynamically Favorable Multi-enzyme Cascade Reaction for Efficient Sustainable Production of ω-Amino Fatty Acids and α,ω-Diamines.
    Li JM; Shi K; Li AT; Zhang ZJ; Yu HL; Xu JH
    ChemSusChem; 2024 Mar; 17(6):e202301477. PubMed ID: 38117609
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical properties of a Pseudomonas aminotransferase involved in caprolactam metabolism.
    Palacio CM; Rozeboom HJ; Lanfranchi E; Meng Q; Otzen M; Janssen DB
    FEBS J; 2019 Oct; 286(20):4086-4102. PubMed ID: 31162815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic pathway of 6-aminohexanoate in the nylon oligomer-degrading bacterium Arthrobacter sp. KI72: identification of the enzymes responsible for the conversion of 6-aminohexanoate to adipate.
    Takehara I; Fujii T; Tanimoto Y; Kato DI; Takeo M; Negoro S
    Appl Microbiol Biotechnol; 2018 Jan; 102(2):801-814. PubMed ID: 29188330
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo plug-and-play: a modular multi-enzyme single-cell catalyst for the asymmetric amination of ketoacids and ketones.
    Farnberger JE; Lorenz E; Richter N; Wendisch VF; Kroutil W
    Microb Cell Fact; 2017 Jul; 16(1):132. PubMed ID: 28754115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioproduction of Benzylamine from Renewable Feedstocks via a Nine-Step Artificial Enzyme Cascade and Engineered Metabolic Pathways.
    Zhou Y; Wu S; Mao J; Li Z
    ChemSusChem; 2018 Jul; 11(13):2221-2228. PubMed ID: 29766662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent achievements in developing the biocatalytic toolbox for chiral amine synthesis.
    Kohls H; Steffen-Munsberg F; Höhne M
    Curr Opin Chem Biol; 2014 Apr; 19():180-92. PubMed ID: 24721252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carboxylic acid reductases in metabolic engineering.
    Butler N; Kunjapur AM
    J Biotechnol; 2020 Jan; 307():1-14. PubMed ID: 31628973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.