These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31886910)

  • 1. A Facilely Synthesized Dual-State Emission Platform for Picric Acid Detection and Latent Fingerprint Visualization.
    Xi D; Xu Y; Xu R; Wang Z; Liu D; Shen Q; Yue L; Dang D; Meng L
    Chemistry; 2020 Feb; 26(12):2741-2748. PubMed ID: 31886910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent TiO2 powders prepared using a new perylene diimide dye: applications in latent fingermark detection.
    Choi MJ; Smoother T; Martin AA; McDonagh AM; Maynard PJ; Lennard C; Roux C
    Forensic Sci Int; 2007 Dec; 173(2-3):154-60. PubMed ID: 17399926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aggregation-directed High Fidelity Sensing of Picric Acid by a Perylenediimide-based Luminogen.
    Pramanik B; Das S; Das D
    Chem Asian J; 2020 Dec; 15(24):4291-4296. PubMed ID: 33137228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High excimer-state emission of perylene bisimides and recognition of latent fingerprints.
    Wang KR; Yang ZB; Li XL
    Chemistry; 2015 Apr; 21(15):5680-4. PubMed ID: 25703801
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Perylene Diimide Based Fluorescent Dyes for Selective Sensing of Nitroaromatic Compounds: Selective Sensing in Aqueous Medium Across Wide pH Range.
    Hariharan PS; Pitchaimani J; Madhu V; Anthony SP
    J Fluoresc; 2016 Mar; 26(2):395-401. PubMed ID: 26585348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Instant in situ highlighting of latent fingerprints by a green fluorescent probe based on aggregation-induced emission.
    Tian R; Zhu FY; Ma R; Wang YL; Huang J; Li C; Zhu MQ
    Biosens Bioelectron; 2024 Nov; 263():116572. PubMed ID: 39047649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual-state emission difluoroboron derivatives for selective detection of picric acid and reversible acid/base fluorescence switching.
    Ni Y; Zhang S; He X; Huang J; Kong L; Yang J; Yang J
    Anal Methods; 2021 Jul; 13(25):2830-2835. PubMed ID: 34079969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-Emissive Mn-Doped Lead Halide Perovskite Nanocrystals as Background-Suppressed Latent Fingerprint Detection Probes.
    Jung HS; Choe H; Park J; Kim Y; Oh SJ; Ryu SJ; Na HK; Lee SJ; Neuman KC; Cho J; Shim JH
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37877789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrene-based chemosens or detects picric acid upto attogram level through aggregation enhanced excimer emission.
    Chopra R; Kaur P; Singh K
    Anal Chim Acta; 2015 Mar; 864():55-63. PubMed ID: 25732427
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-step facile preparation of carbon dots with high fluorescence quantum yield and application in rapid latent fingerprint detection.
    Wang X; Yuan Y; Sun Y; Liu X; Ma M; Zhang R; Shi F
    RSC Adv; 2022 Sep; 12(42):27199-27205. PubMed ID: 36276032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple and sensitive turn-on fluorescence probe for detection of cetyltrimethylammonium bromide in aqueous samples.
    Tai D; Liu J
    Luminescence; 2015 May; 30(3):358-61. PubMed ID: 25044401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrene-Based Chemosensor for Picric Acid-Fundamentals to Smartphone Device Design.
    Kathiravan A; Gowri A; Khamrang T; Kumar MD; Dhenadhayalan N; Lin KC; Velusamy M; Jaccob M
    Anal Chem; 2019 Oct; 91(20):13244-13250. PubMed ID: 31542920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mercury assisted fluorescent supramolecular assembly of hexaphenylbenzene derivative for femtogram detection of picric acid.
    Pramanik S; Bhalla V; Kumar M
    Anal Chim Acta; 2013 Sep; 793():99-106. PubMed ID: 23953212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical reaction mediated self-assembly of PTCDA into nanofibers.
    Sayyad AS; Balakrishnan K; Ajayan PM
    Nanoscale; 2011 Sep; 3(9):3605-8. PubMed ID: 21814688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal formate framework-assisted solid fluorescent material based on carbonized nanoparticles for the detection of latent fingerprints.
    Zhu Q; Wang W; Kong W; Chao X; Bi Y; Li Z
    Anal Chim Acta; 2022 May; 1209():339864. PubMed ID: 35569874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Guest-Induced Ultrasensitive Detection of Multiple Toxic Organics and Fe
    Goswami R; Mandal SC; Pathak B; Neogi S
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9042-9053. PubMed ID: 30717599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis, characterization, and photophysical study of fluorescent N-substituted benzo[ghi]perylene "swallow tail" monoimides.
    Manning SJ; Bogen W; Kelly LA
    J Org Chem; 2011 Aug; 76(15):6007-13. PubMed ID: 21648456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrabright Fluorescent Silica Nanoparticles Embedded with Conjugated Oligomers and Their Application in Latent Fingerprint Detection.
    Zhang S; Liu R; Cui Q; Yang Y; Cao Q; Xu W; Li L
    ACS Appl Mater Interfaces; 2017 Dec; 9(50):44134-44145. PubMed ID: 29185339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gas phase and bulk ultraviolet photoemission spectroscopy of 3,4,9,10-perylene-tetracarboxylic dianhydride, 1,4,5,8-naphthalene-tetracarboxylic dianhydride, and 1,8-naphthalene-dicarboxylic anhydride.
    Sauther J; Wüsten J; Lach S; Ziegler Ch
    J Chem Phys; 2009 Jul; 131(3):034711. PubMed ID: 19624225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-sensitive fluorescence spectroscopy of isolated surface-adsorbed molecules using an optical nanofiber.
    Stiebeiner A; Rehband O; Garcia-Fernandez R; Rauschenbeutel A
    Opt Express; 2009 Nov; 17(24):21704-11. PubMed ID: 19997412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.