These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31886911)

  • 1. Synthesis of β-Glucosides with 3-O-Picoloyl-Protected Glycosyl Donors in the Presence of Excess Triflic Acid: Defining the Scope.
    Mannino MP; Demchenko AV
    Chemistry; 2020 Mar; 26(13):2938-2946. PubMed ID: 31886911
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of β-Glucosides with 3-O-Picoloyl-Protected Glycosyl Donors in the Presence of Excess Triflic Acid: A Mechanistic Study.
    Mannino MP; Demchenko AV
    Chemistry; 2020 Mar; 26(13):2927-2937. PubMed ID: 31886924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycosylation from the non-reducing end using a combination of thioglycoside and glycosyl sulfoxide as the glycosyl donor and the acceptor.
    Kajimoto T; Arimitsu K; Ozeki M; Node M
    Chem Pharm Bull (Tokyo); 2010 May; 58(5):758-64. PubMed ID: 20460812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the H-bond-mediated aglycone delivery reaction in application to the synthesis of β-glucosides.
    Mannino MP; Yasomanee JP; Demchenko AV
    Carbohydr Res; 2018 Dec; 470():1-7. PubMed ID: 30286335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 6-O-Picolinyl and 6-O-Picoloyl Building Blocks As Glycosyl Donors with Switchable Stereoselectivity.
    Kayastha AK; Jia XG; Yasomanee JP; Demchenko AV
    Org Lett; 2015 Sep; 17(18):4448-51. PubMed ID: 26349759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. β-Selective Glycosylation by Using O-Aryl-Protected Glycosyl Donors.
    Otsuka Y; Yamamoto T; Fukase K
    Chem Asian J; 2019 Aug; 14(15):2719-2723. PubMed ID: 31173467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Study on the Effects of Picoloyl Groups in Sialylations Based on Their Substitution Pattern.
    Jones B; Behm A; Shadrick M; Geringer SA; Escopy S; Lohman M; De Meo C
    J Org Chem; 2019 Dec; 84(23):15052-15062. PubMed ID: 31718181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is an acyl group at O-3 in glucosyl donors able to control α-stereoselectivity of glycosylation? The role of conformational mobility and the protecting group at O-6.
    Komarova BS; Orekhova MV; Tsvetkov YE; Nifantiev NE
    Carbohydr Res; 2014 Jan; 384():70-86. PubMed ID: 24368161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and glycosidation of building blocks of D-altrosamine.
    Novakova M; Das A; Alex C; Demchenko AV
    Front Chem; 2022; 10():945779. PubMed ID: 36226114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of the stereoselectivity of the glycosylation reaction with 2-azido-2-deoxy-1-thioglucoside donors.
    Lourenço EC; Ventura MR
    Carbohydr Res; 2016 May; 426():33-9. PubMed ID: 27058294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of remote picolinyl and picoloyl substituents on the stereoselectivity of chemical glycosylation.
    Yasomanee JP; Demchenko AV
    J Am Chem Soc; 2012 Dec; 134(49):20097-102. PubMed ID: 23167454
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stereoselective direct glycosylation with anomeric hydroxy sugars by activation with phthalic anhydride and trifluoromethanesulfonic anhydride involving glycosyl phthalate intermediates.
    Kim KS; Fulse DB; Baek JY; Lee BY; Jeon HB
    J Am Chem Soc; 2008 Jul; 130(26):8537-47. PubMed ID: 18528988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stereoselectivity in Glycosylation with Deoxofluorinated Glucosazide and Galactosazide Thiodonors.
    Kurfiřt M; Červenková Št'astná L; Dračínský M; Müllerová M; Hamala V; Cuřínová P; Karban J
    J Org Chem; 2019 May; 84(10):6405-6431. PubMed ID: 31062975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Are Brønsted Acids the True Promoter of Metal-Triflate-Catalyzed Glycosylations? A Mechanistic Probe into 1,2-
    Sletten ET; Tu YJ; Schlegel HB; Nguyen HM
    ACS Catal; 2019 Mar; 9(3):2110-2123. PubMed ID: 31819822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stereoselective 1,2-cis glycosylation of 2-O-allyl protected thioglycosides.
    Aloui M; Chambers DJ; Cumpstey I; Fairbanks AJ; Redgrave AJ; Seward CM
    Chemistry; 2002 Jun; 8(11):2608-21. PubMed ID: 12180341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A versatile approach to the synthesis of glycans containing mannuronic acid residues.
    Alex C; Visansirikul S; Demchenko AV
    Org Biomol Chem; 2021 Mar; 19(12):2731-2743. PubMed ID: 33687051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unexpected loss of stereoselectivity in glycosylation reactions during the synthesis of chondroitin sulfate oligosaccharides.
    Mena-Barragán T; de Paz JL; Nieto PM
    Beilstein J Org Chem; 2019; 15():137-144. PubMed ID: 30745989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen-bond-mediated aglycone delivery (HAD): a highly stereoselective synthesis of 1,2-cis α-D-glucosides from common glycosyl donors in the presence of bromine.
    Yasomanee JP; Demchenko AV
    Chemistry; 2015 Apr; 21(17):6572-81. PubMed ID: 25765479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycosylation with 2-Acetamido-2-deoxyglycosyl Donors at a Low Temperature: Scope of the Non-Oxazoline Method.
    Arihara R; Kakita K; Suzuki N; Nakamura S; Hashimoto S
    J Org Chem; 2015 May; 80(9):4259-77. PubMed ID: 25807142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined Effect of the Picoloyl Protecting Group and Triflic Acid in Sialylation.
    Escopy S; Geringer SA; De Meo C
    Org Lett; 2017 May; 19(10):2638-2641. PubMed ID: 28453277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.