These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31886942)

  • 41. Boron-Doped PdCuAu Nanospine Assembly as an Efficient Electrocatalyst toward Formic Acid Oxidation.
    Wang H; Qian X; Liu S; Yin S; Xu Y; Li X; Wang Z; Wang L
    Chemistry; 2020 Feb; 26(11):2493-2498. PubMed ID: 31867812
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Design and synthesis of Pd-MnO2 nanolamella-graphene composite as a high-performance multifunctional electrocatalyst towards formic acid and methanol oxidation.
    Huang H; Wang X
    Phys Chem Chem Phys; 2013 Jul; 15(25):10367-75. PubMed ID: 23681315
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Sonochemical synthesis of high-performance Pd@CuNWs/MWCNTs-CH electrocatalyst by galvanic replacement toward ethanol oxidation in alkaline media.
    Farsadrooh M; Noroozifar M; Modarresi-Alam AR; Saravani H
    Ultrason Sonochem; 2019 Mar; 51():478-486. PubMed ID: 30219352
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structural effects of electrochemical oxidation of formic acid on single crystal electrodes of palladium.
    Hoshi N; Kida K; Nakamura M; Nakada M; Osada K
    J Phys Chem B; 2006 Jun; 110(25):12480-4. PubMed ID: 16800575
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Synthesis, characterization and electrocatalytic performance of Pd/CMK-3 for formic acid oxidation].
    Huan ZK; Zong EM; Wei D; Wan HQ; Zheng SR; Xu ZY
    Huan Jing Ke Xue; 2012 Oct; 33(10):3479-83. PubMed ID: 23233976
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechanistic effects of blending formic acid with ethanol on Pd activity towards formic acid oxidation in acidic media.
    Al Najjar T; Ahmed N; El Sawy EN
    RSC Adv; 2021 Jun; 11(37):22842-22848. PubMed ID: 35480453
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bidirectional controlling synthesis of branched PdCu nanoalloys for efficient and robust formic acid oxidation electrocatalysis.
    Yang B; Zhang W; Hu S; Liu C; Wang X; Fan Y; Jiang Z; Yang J; Chen W
    J Colloid Interface Sci; 2021 Oct; 600():503-512. PubMed ID: 34023708
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Leveraging Pd(100)/SnO
    Huang H; Yang T; Sun F; Liu Z; Tang Q; Liu L; Han Y; Huang J
    Nanoscale; 2023 Feb; 15(5):2122-2133. PubMed ID: 36648401
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Controllable self-assembly of Pd nanowire networks as highly active electrocatalysts for direct formic acid fuel cells.
    Wang S; Wang X; Jiang SP
    Nanotechnology; 2008 Nov; 19(45):455602. PubMed ID: 21832779
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fabrication of Nitrogen-Doped Mesoporous-Carbon-Coated Palladium Nanoparticles: An Intriguing Electrocatalyst for Methanol and Formic Acid Oxidation.
    Ray C; Dutta S; Sahoo R; Roy A; Negishi Y; Pal T
    Chem Asian J; 2016 May; 11(10):1588-96. PubMed ID: 27016895
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Pd Nanoparticles Coupled to WO
    Xi Z; Erdosy DP; Mendoza-Garcia A; Duchesne PN; Li J; Muzzio M; Li Q; Zhang P; Sun S
    Nano Lett; 2017 Apr; 17(4):2727-2731. PubMed ID: 28318266
    [TBL] [Abstract][Full Text] [Related]  

  • 52. MXene Surface Terminations Enable Strong Metal-Support Interactions for Efficient Methanol Oxidation on Palladium.
    Lang Z; Zhuang Z; Li S; Xia L; Zhao Y; Zhao Y; Han C; Zhou L
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2400-2406. PubMed ID: 31868343
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Perforated Pd Nanosheets with Crystalline/Amorphous Heterostructures as a Highly Active Robust Catalyst toward Formic Acid Oxidation.
    Zhang LY; Ouyang Y; Wang S; Wu D; Jiang M; Wang F; Yuan W; Li CM
    Small; 2019 Nov; 15(47):e1904245. PubMed ID: 31617305
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multi-generation overgrowth induced synthesis of three-dimensional highly branched palladium tetrapods and their electrocatalytic activity for formic acid oxidation.
    Zhao R; Fu G; Zhou T; Chen Y; Zhu X; Tang Y; Lu T
    Nanoscale; 2014 Mar; 6(5):2776-81. PubMed ID: 24463486
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Formic acid electrooxidation on thallium-decorated shape-controlled platinum nanoparticles: an improvement in electrocatalytic activity.
    Busó-Rogero C; Perales-Rondón JV; Farias MJ; Vidal-Iglesias FJ; Solla-Gullon J; Herrero E; Feliu JM
    Phys Chem Chem Phys; 2014 Jul; 16(27):13616-24. PubMed ID: 24638124
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Correlations between experiments and simulations for formic acid oxidation.
    Bagger A; Jensen KD; Rashedi M; Luo R; Du J; Zhang D; Pereira IJ; Escudero-Escribano M; Arenz M; Rossmeisl J
    Chem Sci; 2022 Nov; 13(45):13409-13417. PubMed ID: 36507186
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microbial synthesis of highly dispersed PdAu alloy for enhanced electrocatalysis.
    Liu J; Zheng Y; Hong Z; Cai K; Zhao F; Han H
    Sci Adv; 2016 Sep; 2(9):e1600858. PubMed ID: 27704047
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ultra-low loading of Pd
    Zhuang Z; Chen W
    J Colloid Interface Sci; 2019 Mar; 538():699-708. PubMed ID: 30545584
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Formic acid electrooxidation on Pd in acidic solutions studied by surface-enhanced infrared absorption spectroscopy.
    Miyake H; Okada T; Samjeské G; Osawa M
    Phys Chem Chem Phys; 2008 Jul; 10(25):3662-9. PubMed ID: 18563227
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Monodisperse ordered indium-palladium nanoparticles: synthesis and role of indium for boosting superior electrocatalytic activity for ethanol oxidation reaction.
    Chen YJ; Chen YR; Chiang CH; Tung KL; Yeh TK; Tuan HY
    Nanoscale; 2019 Feb; 11(7):3336-3343. PubMed ID: 30724949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.