These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Regulating the Nature of Triplet Excited States of Thermally Activated Delayed Fluorescence Emitters. Zhao Z; Yan S; Ren Z Acc Chem Res; 2023 Jul; 56(14):1942-1952. PubMed ID: 37364229 [TBL] [Abstract][Full Text] [Related]
4. TADF Material Design: Photophysical Background and Case Studies Focusing on Cu Yersin H; Czerwieniec R; Shafikov MZ; Suleymanova AF Chemphyschem; 2017 Dec; 18(24):3508-3535. PubMed ID: 29083512 [TBL] [Abstract][Full Text] [Related]
5. Computational Investigations of the Detailed Mechanism of Reverse Intersystem Crossing in Inverted Singlet-Triplet Gap Molecules. Valverde D; Ser CT; Ricci G; Jorner K; Pollice R; Aspuru-Guzik A; Olivier Y ACS Appl Mater Interfaces; 2024 Dec; 16(49):66991-67001. PubMed ID: 38728616 [TBL] [Abstract][Full Text] [Related]
6. Enhanced Upconversion of Triplet Excitons for Conjugated Polymeric Thermally Activated Delayed Fluorescence Emitters by Employing an Intramolecular Sensitization Strategy. Liu Y; Tong X; Chen X; Wang Y; Ying S; Ren Z; Yan S ACS Appl Mater Interfaces; 2021 Feb; 13(7):8997-9005. PubMed ID: 33570400 [TBL] [Abstract][Full Text] [Related]
7. Method for accurate experimental determination of singlet and triplet exciton diffusion between thermally activated delayed fluorescence molecules. Jakoby M; Heidrich S; Graf von Reventlow L; Degitz C; Suresh SM; Zysman-Colman E; Wenzel W; Richards BS; Howard IA Chem Sci; 2020 Nov; 12(3):1121-1125. PubMed ID: 34163879 [TBL] [Abstract][Full Text] [Related]
8. Photophysics of thermally activated delayed fluorescence molecules. Dias FB; Penfold TJ; Monkman AP Methods Appl Fluoresc; 2017 Mar; 5(1):012001. PubMed ID: 28276340 [TBL] [Abstract][Full Text] [Related]
10. Reliable Prediction with Tuned Range-Separated Functionals of the Singlet-Triplet Gap in Organic Emitters for Thermally Activated Delayed Fluorescence. Sun H; Zhong C; Brédas JL J Chem Theory Comput; 2015 Aug; 11(8):3851-8. PubMed ID: 26574466 [TBL] [Abstract][Full Text] [Related]
11. Recent progress in thermally activated delayed fluorescence emitters for nondoped organic light-emitting diodes. Shi YZ; Wu H; Wang K; Yu J; Ou XM; Zhang XH Chem Sci; 2022 Mar; 13(13):3625-3651. PubMed ID: 35432901 [TBL] [Abstract][Full Text] [Related]
12. Triplet dynamics reveal loss pathways in multi-resonance thermally activated delayed fluorescence emitters. Stuart AN; Bergmann K; Cho I; Kendrick WJ; Hudson ZM; Wong WWH; Lakhwani G Chem Sci; 2024 Aug; 15(34):14027-36. PubMed ID: 39144466 [TBL] [Abstract][Full Text] [Related]
13. Strategy for the Realization of Highly Efficient Solution-Processed All-Fluorescence White OLEDs-Encapsulated Thermally Activated Delayed Fluorescent Yellow Emitters. Ban X; Chen F; Zhao Y; Zhu A; Tong Z; Jiang W; Sun Y ACS Appl Mater Interfaces; 2018 Oct; 10(43):37335-37344. PubMed ID: 30303007 [TBL] [Abstract][Full Text] [Related]
14. Negative Singlet-Triplet Excitation Energy Gap in Triangle-Shaped Molecular Emitters for Efficient Triplet Harvesting. Sanz-Rodrigo J; Ricci G; Olivier Y; Sancho-García JC J Phys Chem A; 2021 Jan; 125(2):513-522. PubMed ID: 33401898 [TBL] [Abstract][Full Text] [Related]
15. Highly Efficient Blue Fluorescent OLEDs Based on Upper Level Triplet-Singlet Intersystem Crossing. Xu Y; Liang X; Zhou X; Yuan P; Zhou J; Wang C; Li B; Hu D; Qiao X; Jiang X; Liu L; Su SJ; Ma D; Ma Y Adv Mater; 2019 Mar; 31(12):e1807388. PubMed ID: 30714207 [TBL] [Abstract][Full Text] [Related]
16. Purely Organic Crystals Exhibit Bright Thermally Activated Delayed Fluorescence. Cai X; Qiao Z; Li M; Wu X; He Y; Jiang X; Cao Y; Su SJ Angew Chem Int Ed Engl; 2019 Sep; 58(38):13522-13531. PubMed ID: 31267665 [TBL] [Abstract][Full Text] [Related]