These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 31887119)
1. Comparative de novo transcriptomics and untargeted metabolomic analyses elucidate complicated mechanisms regulating celery (Apium graveolens L.) responses to selenium stimuli. Zhang C; Xu B; Zhao CR; Sun J; Lai Q; Yu C PLoS One; 2019; 14(12):e0226752. PubMed ID: 31887119 [TBL] [Abstract][Full Text] [Related]
2. High throughput sequencing of two celery varieties small RNAs identifies microRNAs involved in temperature stress response. Li MY; Wang F; Xu ZS; Jiang Q; Ma J; Tan GF; Xiong AS BMC Genomics; 2014 Mar; 15():242. PubMed ID: 24673837 [TBL] [Abstract][Full Text] [Related]
3. Elevated CO Liu JX; Feng K; Wang GL; Xu ZS; Wang F; Xiong AS Plant Physiol Biochem; 2018 Jun; 127():310-319. PubMed ID: 29653434 [TBL] [Abstract][Full Text] [Related]
4. Combined Analysis of the Metabolome and Transcriptome to Explore Heat Stress Responses and Adaptation Mechanisms in Celery ( Li M; Li J; Zhang R; Lin Y; Xiong A; Tan G; Luo Y; Zhang Y; Chen Q; Wang Y; Zhang Y; Wang X; Tang H Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328788 [TBL] [Abstract][Full Text] [Related]
5. Comparative Physiological and Transcriptomic Analyses of Improved Heat Stress Tolerance in Celery ( Li M; Zhou J; Du J; Li X; Sun Y; Wang Z; Lin Y; Zhang Y; Wang Y; He W; Wang X; Chen Q; Zhang Y; Luo Y; Tang H Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232683 [TBL] [Abstract][Full Text] [Related]
6. Transcriptome profiling reveals the association of multiple genes and pathways contributing to hormonal control in celery leaves. Liu J; Feng K; Hou X; Li H; Wang G; Xu Z; Xiong A Acta Biochim Biophys Sin (Shanghai); 2019 May; 51(5):524-534. PubMed ID: 30939194 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome profiling and digital gene expression by deep sequencing in early somatic embryogenesis of endangered medicinal Eleutherococcus senticosus Maxim. Tao L; Zhao Y; Wu Y; Wang Q; Yuan H; Zhao L; Guo W; You X Gene; 2016 Mar; 578(1):17-24. PubMed ID: 26657036 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis. Van Hoewyk D; Takahashi H; Inoue E; Hess A; Tamaoki M; Pilon-Smits EA Physiol Plant; 2008 Feb; 132(2):236-53. PubMed ID: 18251864 [TBL] [Abstract][Full Text] [Related]
9. Comparative transcriptomics provides novel insights into the mechanisms of selenium tolerance in the hyperaccumulator plant Cardamine hupingshanensis. Zhou Y; Tang Q; Wu M; Mou D; Liu H; Wang S; Zhang C; Ding L; Luo J Sci Rep; 2018 Feb; 8(1):2789. PubMed ID: 29434336 [TBL] [Abstract][Full Text] [Related]
10. Integration analysis of PacBio SMRT- and Illumina RNA-seq reveals candidate genes and pathway involved in selenium metabolism in hyperaccumulator Cardamine violifolia. Rao S; Yu T; Cong X; Xu F; Lai X; Zhang W; Liao Y; Cheng S BMC Plant Biol; 2020 Oct; 20(1):492. PubMed ID: 33109081 [TBL] [Abstract][Full Text] [Related]
11. Comparative metabolomics provides novel insights into the basis of petiole color differences in celery ( Li M; Li J; Tan H; Luo Y; Zhang Y; Chen Q; Wang Y; Lin Y; Zhang Y; Wang X; Tang H J Zhejiang Univ Sci B; 2022 Apr; 23(4):300-314. PubMed ID: 35403385 [TBL] [Abstract][Full Text] [Related]
12. Transcriptomics and Genomics Analysis Uncover the Differentially Expressed Chlorophyll and Carotenoid-Related Genes in Celery. Song X; Li N; Zhang Y; Liang Y; Zhou R; Yu T; Shen S; Feng S; Zhang Y; Li X; Lin H; Wang X Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012264 [TBL] [Abstract][Full Text] [Related]
13. Mapping of the AgWp1 gene for the white petiole in celery (Apium graveolens L.). Cheng Q; He Y; Lu Q; Wang H; Liu S; Liu J; Liu M; Zhang Y; Wang Y; Sun L; Shen H Plant Sci; 2023 Feb; 327():111563. PubMed ID: 36509245 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide analysis of NAC transcription factors and their response to abiotic stress in celery (Apium graveolens L.). Duan AQ; Yang XL; Feng K; Liu JX; Xu ZS; Xiong AS Comput Biol Chem; 2020 Feb; 84():107186. PubMed ID: 31809981 [TBL] [Abstract][Full Text] [Related]
15. De Novo Transcriptome Assembly and Comparative Analysis Elucidate Complicated Mechanism Regulating Astragalus chrysochlorus Response to Selenium Stimuli. Çakır Ö; Turgut-Kara N; Arı Ş; Zhang B PLoS One; 2015; 10(10):e0135677. PubMed ID: 26431547 [TBL] [Abstract][Full Text] [Related]
16. De novo sequencing and analysis of the cranberry fruit transcriptome to identify putative genes involved in flavonoid biosynthesis, transport and regulation. Sun H; Liu Y; Gai Y; Geng J; Chen L; Liu H; Kang L; Tian Y; Li Y BMC Genomics; 2015 Sep; 16(1):652. PubMed ID: 26330221 [TBL] [Abstract][Full Text] [Related]
17. Elevated gibberellin enhances lignin accumulation in celery (Apium graveolens L.) leaves. Duan AQ; Feng K; Wang GL; Liu JX; Xu ZS; Xiong AS Protoplasma; 2019 May; 256(3):777-788. PubMed ID: 30604245 [TBL] [Abstract][Full Text] [Related]
18. De Novo RNA Sequencing and Expression Analysis of Aconitum carmichaelii to Analyze Key Genes Involved in the Biosynthesis of Diterpene Alkaloids. Rai M; Rai A; Kawano N; Yoshimatsu K; Takahashi H; Suzuki H; Kawahara N; Saito K; Yamazaki M Molecules; 2017 Dec; 22(12):. PubMed ID: 29206203 [No Abstract] [Full Text] [Related]
19. Complete Mitochondrial Genome Sequence and Identification of a Candidate Gene Responsible for Cytoplasmic Male Sterility in Celery ( Cheng Q; Wang P; Li T; Liu J; Zhang Y; Wang Y; Sun L; Shen H Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445290 [TBL] [Abstract][Full Text] [Related]
20. De novo transcriptome assembly and co-expression network analysis of Cynanchum thesioides: Identification of genes involved in resistance to drought stress. Zhang X; Yang Z; Li Z; Zhang F; Hao L Gene; 2019 Aug; 710():375-386. PubMed ID: 31200084 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]