These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31887287)

  • 1. A Computational Protocol for Regulating Protein Binding Reactions with a Light-Sensitive Protein Dimer.
    Teets FD; Watanabe T; Hahn KM; Kuhlman B
    J Mol Biol; 2020 Feb; 432(4):805-814. PubMed ID: 31887287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering an improved light-induced dimer (iLID) for controlling the localization and activity of signaling proteins.
    Guntas G; Hallett RA; Zimmerman SP; Williams T; Yumerefendi H; Bear JE; Kuhlman B
    Proc Natl Acad Sci U S A; 2015 Jan; 112(1):112-7. PubMed ID: 25535392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Allosteric inactivation of an engineered optogenetic GTPase.
    Jain A; Dokholyan NV; Lee AL
    Proc Natl Acad Sci U S A; 2023 Apr; 120(14):e2219254120. PubMed ID: 36972433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FRET binding antenna reports spatiotemporal dynamics of GDI-Cdc42 GTPase interactions.
    Hodgson L; Spiering D; Sabouri-Ghomi M; Dagliyan O; DerMardirossian C; Danuser G; Hahn KM
    Nat Chem Biol; 2016 Oct; 12(10):802-809. PubMed ID: 27501396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of Cdc42 bound to the GTPase binding domain of PAK.
    Morreale A; Venkatesan M; Mott HR; Owen D; Nietlispach D; Lowe PN; Laue ED
    Nat Struct Biol; 2000 May; 7(5):384-8. PubMed ID: 10802735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictive Spatiotemporal Manipulation of Signaling Perturbations Using Optogenetics.
    Valon L; Etoc F; Remorino A; di Pietro F; Morin X; Dahan M; Coppey M
    Biophys J; 2015 Nov; 109(9):1785-97. PubMed ID: 26536256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lights, cytoskeleton, action: Optogenetic control of cell dynamics.
    Wittmann T; Dema A; van Haren J
    Curr Opin Cell Biol; 2020 Oct; 66():1-10. PubMed ID: 32371345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-regulated allosteric switch enables temporal and subcellular control of enzyme activity.
    Shaaya M; Fauser J; Zhurikhina A; Conage-Pough JE; Huyot V; Brennan M; Flower CT; Matsche J; Khan S; Natarajan V; Rehman J; Kota P; White FM; Tsygankov D; Karginov AV
    Elife; 2020 Sep; 9():. PubMed ID: 32965214
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oncogenic Dbl, Cdc42, and p21-activated kinase form a ternary signaling intermediate through the minimum interactive domains.
    Wang L; Zhu K; Zheng Y
    Biochemistry; 2004 Nov; 43(46):14584-93. PubMed ID: 15544329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optogenetics: Rho GTPases Activated by Light in Living Macrophages.
    Hülsemann M; Verkhusha PV; Guo P; Miskolci V; Cox D; Hodgson L
    Methods Mol Biol; 2020; 2108():281-293. PubMed ID: 31939189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of Cell Migration Using Optogenetics.
    Valon L; de Beco S
    Methods Mol Biol; 2021; 2179():415-425. PubMed ID: 32939735
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optogenetic control of cofilin and αTAT in living cells using Z-lock.
    Stone OJ; Pankow N; Liu B; Sharma VP; Eddy RJ; Wang H; Putz AT; Teets FD; Kuhlman B; Condeelis JS; Hahn KM
    Nat Chem Biol; 2019 Dec; 15(12):1183-1190. PubMed ID: 31740825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the Rho family GTP-binding protein Cdc42 in complex with the multifunctional regulator RhoGDI.
    Hoffman GR; Nassar N; Cerione RA
    Cell; 2000 Feb; 100(3):345-56. PubMed ID: 10676816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering Optogenetic Protein Analogs.
    Liu B; Marston DJ; Hahn KM
    Methods Mol Biol; 2020; 2173():113-126. PubMed ID: 32651913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Structural Basis for Cdc42-Induced Dimerization of IQGAPs.
    LeCour L; Boyapati VK; Liu J; Li Z; Sacks DB; Worthylake DK
    Structure; 2016 Sep; 24(9):1499-508. PubMed ID: 27524202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct multiplex imaging and optogenetics of Rho GTPases enabled by near-infrared FRET.
    Shcherbakova DM; Cox Cammer N; Huisman TM; Verkhusha VV; Hodgson L
    Nat Chem Biol; 2018 Jun; 14(6):591-600. PubMed ID: 29686359
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation of IQGAP1 modulates its binding to Cdc42, revealing a new type of rho-GTPase regulator.
    Grohmanova K; Schlaepfer D; Hess D; Gutierrez P; Beck M; Kroschewski R
    J Biol Chem; 2004 Nov; 279(47):48495-504. PubMed ID: 15355962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal control of fibroblast growth factor receptor signals by blue light.
    Kim N; Kim JM; Lee M; Kim CY; Chang KY; Heo WD
    Chem Biol; 2014 Jul; 21(7):903-12. PubMed ID: 24981772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the catalytic mechanism of GTPase-activating proteins: demonstration of the importance of switch domain stabilization in the stimulation of GTP hydrolysis.
    Fidyk NJ; Cerione RA
    Biochemistry; 2002 Dec; 41(52):15644-53. PubMed ID: 12501193
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CDC42 binds PAK4 via an extended GTPase-effector interface.
    Ha BH; Boggon TJ
    Proc Natl Acad Sci U S A; 2018 Jan; 115(3):531-536. PubMed ID: 29295922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.