These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31887287)

  • 21. Cells lay their own tracks - optogenetic Cdc42 activation stimulates fibronectin deposition supporting directed migration.
    Zimmerman SP; Asokan SB; Kuhlman B; Bear JE
    J Cell Sci; 2017 Sep; 130(18):2971-2983. PubMed ID: 28754687
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural coupling between the Rho-insert domain of Cdc42 and the geranylgeranyl binding site of RhoGDI.
    Abramovitz A; Gutman M; Nachliel E
    Biochemistry; 2012 Jan; 51(2):715-23. PubMed ID: 22206343
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optogenetic Navigation of Routes Leading to Protein Amyloidogenesis in Bacteria.
    Giraldo R
    J Mol Biol; 2019 Mar; 431(6):1186-1202. PubMed ID: 30721672
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Residues in Cdc42 that specify binding to individual CRIB effector proteins.
    Owen D; Mott HR; Laue ED; Lowe PN
    Biochemistry; 2000 Feb; 39(6):1243-50. PubMed ID: 10684602
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Blue Light-excited Light-Oxygen-Voltage-sensing Domain 2 (LOV2) Triggers a Rearrangement of the Kinase Domain to Induce Phosphorylation Activity in Arabidopsis Phototropin1.
    Oide M; Okajima K; Kashojiya S; Takayama Y; Oroguchi T; Hikima T; Yamamoto M; Nakasako M
    J Biol Chem; 2016 Sep; 291(38):19975-84. PubMed ID: 27484797
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of the region in Cdc42 that confers the binding specificity to activated Cdc42-associated kinase.
    Gu Y; Lin Q; Childress C; Yang W
    J Biol Chem; 2004 Jul; 279(29):30507-13. PubMed ID: 15123659
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unraveling the molecular mechanism of interactions of the Rho GTPases Cdc42 and Rac1 with the scaffolding protein IQGAP2.
    Ozdemir ES; Jang H; Gursoy A; Keskin O; Li Z; Sacks DB; Nussinov R
    J Biol Chem; 2018 Mar; 293(10):3685-3699. PubMed ID: 29358323
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Arabidopsis RopGAPs are a novel family of rho GTPase-activating proteins that require the Cdc42/Rac-interactive binding motif for rop-specific GTPase stimulation.
    Wu G; Li H; Yang Z
    Plant Physiol; 2000 Dec; 124(4):1625-36. PubMed ID: 11115880
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure of the BH domain from graf and its implications for Rho GTPase recognition.
    Longenecker KL; Zhang B; Derewenda U; Sheffield PJ; Dauter Z; Parsons JT; Zheng Y; Derewenda ZS
    J Biol Chem; 2000 Dec; 275(49):38605-10. PubMed ID: 10982819
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Cool-2/alpha-Pix protein mediates a Cdc42-Rac signaling cascade.
    Baird D; Feng Q; Cerione RA
    Curr Biol; 2005 Jan; 15(1):1-10. PubMed ID: 15649357
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antagonistic cross-talk between Rac and Cdc42 GTPases regulates generation of reactive oxygen species.
    Diebold BA; Fowler B; Lu J; Dinauer MC; Bokoch GM
    J Biol Chem; 2004 Jul; 279(27):28136-42. PubMed ID: 15123662
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optogenetic switches for light-controlled gene expression in yeast.
    Salinas F; Rojas V; Delgado V; Agosin E; Larrondo LF
    Appl Microbiol Biotechnol; 2017 Apr; 101(7):2629-2640. PubMed ID: 28210796
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Designing biosensors for Rho family proteins--deciphering the dynamics of Rho family GTPase activation in living cells.
    Pertz O; Hahn KM
    J Cell Sci; 2004 Mar; 117(Pt 8):1313-8. PubMed ID: 15020671
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protocol to Fabricate Engineered Illumination Devices for Optogenetic Control of Cellular Signaling Dynamics.
    Repina NA; Johnson HJ; McClave T; Kane RS; Schaffer DV
    STAR Protoc; 2020 Dec; 1(3):100141. PubMed ID: 33377035
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optogenetic control of protein binding using light-switchable nanobodies.
    Gil AA; Carrasco-López C; Zhu L; Zhao EM; Ravindran PT; Wilson MZ; Goglia AG; Avalos JL; Toettcher JE
    Nat Commun; 2020 Aug; 11(1):4044. PubMed ID: 32792536
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photo-sensitive degron variants for tuning protein stability by light.
    Usherenko S; Stibbe H; Muscò M; Essen LO; Kostina EA; Taxis C
    BMC Syst Biol; 2014 Nov; 8():128. PubMed ID: 25403319
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Rho GTPase complementation underlies BDNF-dependent homo- and heterosynaptic plasticity.
    Hedrick NG; Harward SC; Hall CE; Murakoshi H; McNamara JO; Yasuda R
    Nature; 2016 Oct; 538(7623):104-108. PubMed ID: 27680697
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A dock and coalesce mechanism driven by hydrophobic interactions governs Cdc42 binding with its effector protein ACK.
    Tetley GJN; Mott HR; Cooley RN; Owen D
    J Biol Chem; 2017 Jul; 292(27):11361-11373. PubMed ID: 28539360
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermodynamics of Ras/effector and Cdc42/effector interactions probed by isothermal titration calorimetry.
    Rudolph MG; Linnemann T; Grunewald P; Wittinghofer A; Vetter IR; Herrmann C
    J Biol Chem; 2001 Jun; 276(26):23914-21. PubMed ID: 11292826
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In silico screening of Rac1 ligand specificity.
    Arrigo P; Maggi N; Ruggiero C
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():4098-101. PubMed ID: 19163613
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.