These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 31887455)

  • 1. Towards microstructure-informed material models for human brain tissue.
    Budday S; Sarem M; Starck L; Sommer G; Pfefferle J; Phunchago N; Kuhl E; Paulsen F; Steinmann P; Shastri VP; Holzapfel GA
    Acta Biomater; 2020 Mar; 104():53-65. PubMed ID: 31887455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanical characterization of human brain tissue.
    Budday S; Sommer G; Birkl C; Langkammer C; Haybaeck J; Kohnert J; Bauer M; Paulsen F; Steinmann P; Kuhl E; Holzapfel GA
    Acta Biomater; 2017 Jan; 48():319-340. PubMed ID: 27989920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheological characterization of human brain tissue.
    Budday S; Sommer G; Haybaeck J; Steinmann P; Holzapfel GA; Kuhl E
    Acta Biomater; 2017 Sep; 60():315-329. PubMed ID: 28658600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Viscoelastic parameter identification of human brain tissue.
    Budday S; Sommer G; Holzapfel GA; Steinmann P; Kuhl E
    J Mech Behav Biomed Mater; 2017 Oct; 74():463-476. PubMed ID: 28756040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comprehensive experimental study on material properties of human brain tissue.
    Jin X; Zhu F; Mao H; Shen M; Yang KH
    J Biomech; 2013 Nov; 46(16):2795-801. PubMed ID: 24112782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain stiffness increases with myelin content.
    Weickenmeier J; de Rooij R; Budday S; Steinmann P; Ovaert TC; Kuhl E
    Acta Biomater; 2016 Sep; 42():265-272. PubMed ID: 27475531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting and understanding arterial elasticity from key microstructural features by bidirectional deep learning.
    Linka K; Cavinato C; Humphrey JD; Cyron CJ
    Acta Biomater; 2022 Jul; 147():63-72. PubMed ID: 35643194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlating the microstructural architecture and macrostructural behaviour of the brain.
    Hoppstädter M; Püllmann D; Seydewitz R; Kuhl E; Böl M
    Acta Biomater; 2022 Oct; 151():379-395. PubMed ID: 36002124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multidirectional mechanical properties and constitutive modeling of human adipose tissue under dynamic loading.
    Sun Z; Gepner BD; Lee SH; Rigby J; Cottler PS; Hallman JJ; Kerrigan JR
    Acta Biomater; 2021 Jul; 129():188-198. PubMed ID: 34048975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical characterization of the passive porcine stomach.
    Holzer CS; Pukaluk A; Viertler C; Regitnig P; Caulk AW; Eschbach M; Contini EM; Holzapfel GA
    Acta Biomater; 2024 Jan; 173():167-183. PubMed ID: 37984627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical properties and microstructure of human ventricular myocardium.
    Sommer G; Schriefl AJ; Andrä M; Sacherer M; Viertler C; Wolinski H; Holzapfel GA
    Acta Biomater; 2015 Sep; 24():172-92. PubMed ID: 26141152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unraveling the Local Relation Between Tissue Composition and Human Brain Mechanics Through Machine Learning.
    Linka K; Reiter N; Würges J; Schicht M; Bräuer L; Cyron CJ; Paulsen F; Budday S
    Front Bioeng Biotechnol; 2021; 9():704738. PubMed ID: 34485258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional anisotropic hyperelastic constitutive model describing the mechanical response of human and mouse cervix.
    Shi L; Hu L; Lee N; Fang S; Myers K
    Acta Biomater; 2022 Sep; 150():277-294. PubMed ID: 35931278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interlamellar-induced time-dependent response of intervertebral disc annulus: A microstructure-based chemo-viscoelastic model.
    Kandil K; Zaïri F; Derrouiche A; Messager T; Zaïri F
    Acta Biomater; 2019 Dec; 100():75-91. PubMed ID: 31586727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micromechanical heterogeneity of the rat pia-arachnoid complex.
    Fabris G; M Suar Z; Kurt M
    Acta Biomater; 2019 Dec; 100():29-37. PubMed ID: 31585202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical and microstructural characterisation of the porcine stomach wall: Location- and layer-dependent investigations.
    Bauer M; Morales-Orcajo E; Klemm L; Seydewitz R; Fiebach V; Siebert T; Böl M
    Acta Biomater; 2020 Jan; 102():83-99. PubMed ID: 31760221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear elasticity of the lung extracellular microenvironment is regulated by macroscale tissue strain.
    Jorba I; Beltrán G; Falcones B; Suki B; Farré R; García-Aznar JM; Navajas D
    Acta Biomater; 2019 Jul; 92():265-276. PubMed ID: 31085362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morpho-mechanical mapping of human dura mater microstructure.
    Niestrawska JA; Rodewald M; Schultz C; Quansah E; Meyer-Zedler T; Schmitt M; Popp J; Tomasec I; Ondruschka B; Hammer N
    Acta Biomater; 2023 Oct; 170():86-96. PubMed ID: 37598794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic mechanical characterization and viscoelastic modeling of bovine brain tissue.
    Li W; Shepherd DET; Espino DM
    J Mech Behav Biomed Mater; 2021 Feb; 114():104204. PubMed ID: 33218929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hyperelastic modeling of the human brain tissue: Effects of no-slip boundary condition and compressibility on the uniaxial deformation.
    Voyiadjis GZ; Samadi-Dooki A
    J Mech Behav Biomed Mater; 2018 Jul; 83():63-78. PubMed ID: 29684774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.