These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
868 related articles for article (PubMed ID: 31887649)
21. In Vitro Synergistic Photodynamic, Photothermal, Chemodynamic, and Starvation Therapy Performance of Chlorin e6 Immobilized, Polydopamine-Coated Hollow, Porous Ceria-Based, Hypoxia-Tolerant Nanozymes Carrying a Cascade System. Süngü Akdogan ÇZ; Akbay Çetin E; Onur MA; Önel S; Tuncel A ACS Appl Bio Mater; 2024 May; 7(5):2781-2793. PubMed ID: 38380497 [TBL] [Abstract][Full Text] [Related]
22. Synthesis of novel Chlorin e6-curcumin conjugates as photosensitizers for photodynamic therapy against pancreatic carcinoma. Jalde SS; Chauhan AK; Lee JH; Chaturvedi PK; Park JS; Kim YW Eur J Med Chem; 2018 Mar; 147():66-76. PubMed ID: 29421571 [TBL] [Abstract][Full Text] [Related]
23. ROS-sensitive biomimetic nanocarriers modulate tumor hypoxia for synergistic photodynamic chemotherapy. Liu H; Jiang W; Wang Q; Hang L; Wang Y; Wang Y Biomater Sci; 2019 Aug; 7(9):3706-3716. PubMed ID: 31187794 [TBL] [Abstract][Full Text] [Related]
24. Leveraging a polycationic polymer to direct tunable loading of an anticancer agent and photosensitizer with opposite charges for chemo-photodynamic therapy. Zhao M; Wan S; Peng X; Zhang B; Pan Q; Li S; He B; Pu Y J Mater Chem B; 2020 Feb; 8(6):1235-1244. PubMed ID: 31957757 [TBL] [Abstract][Full Text] [Related]
25. Boron-based nanosheets for combined cancer photothermal and photodynamic therapy. Kang Y; Ji X; Li Z; Su Z; Zhang S J Mater Chem B; 2020 Jun; 8(21):4609-4619. PubMed ID: 32373909 [TBL] [Abstract][Full Text] [Related]
26. Light-activatable Chlorin e6 (Ce6)-imbedded erythrocyte membrane vesicles camouflaged Prussian blue nanoparticles for synergistic photothermal and photodynamic therapies of cancer. Sun L; Li Q; Hou M; Gao Y; Yang R; Zhang L; Xu Z; Kang Y; Xue P Biomater Sci; 2018 Oct; 6(11):2881-2895. PubMed ID: 30192355 [TBL] [Abstract][Full Text] [Related]
27. A natural polysaccharide mediated MOF-based Ce6 delivery system with improved biological properties for photodynamic therapy. Fu X; Yang Z; Deng T; Chen J; Wen Y; Fu X; Zhou L; Zhu Z; Yu C J Mater Chem B; 2020 Feb; 8(7):1481-1488. PubMed ID: 31996879 [TBL] [Abstract][Full Text] [Related]
28. Targeted co-delivery of a photosensitizer and an antisense oligonucleotide based on an activatable hyaluronic acid nanosystem with endogenous oxygen generation for enhanced photodynamic therapy of hypoxic tumors. Wu Y; Ding L; Zheng C; Li H; Wu M; Sun Y; Liu X; Zhang X; Zeng Y Acta Biomater; 2022 Nov; 153():419-430. PubMed ID: 36115655 [TBL] [Abstract][Full Text] [Related]
29. Cascade-amplifying synergistic effects of chemo-photodynamic therapy using ROS-responsive polymeric nanocarriers. Sun CY; Cao Z; Zhang XJ; Sun R; Yu CS; Yang X Theranostics; 2018; 8(11):2939-2953. PubMed ID: 29896295 [TBL] [Abstract][Full Text] [Related]
30. Water-Insoluble Photosensitizer Nanocolloids Stabilized by Supramolecular Interfacial Assembly towards Photodynamic Therapy. Liu Y; Ma K; Jiao T; Xing R; Shen G; Yan X Sci Rep; 2017 Feb; 7():42978. PubMed ID: 28230203 [TBL] [Abstract][Full Text] [Related]
31. pH-responsive oxygen self-sufficient smart nanoplatform for enhanced tumor chemotherapy and photodynamic therapy. Liu X; Wang X; Zang D; Chang Y; Su W; Li G; Zhang J; Yang P; Ma X; Guo Y J Colloid Interface Sci; 2024 Dec; 675():1080-1090. PubMed ID: 39018635 [TBL] [Abstract][Full Text] [Related]
32. MnO Zhang L; Yang R; Yu H; Xu Z; Kang Y; Cui H; Xue P J Mater Chem B; 2021 May; 9(17):3677-3688. PubMed ID: 33949613 [TBL] [Abstract][Full Text] [Related]
33. Nano-delivery vehicle based on chlorin E6, photodynamic therapy, doxorubicin chemotherapy provides targeted treatment of HER-2 negative, ανβ3-positive breast cancer. He Z; Jiang H; Zhang X; Zhang H; Cui Z; Sun L; Li H; Qian J; Ma J; Huang J Pharmacol Res; 2020 Oct; 160():105184. PubMed ID: 32946931 [TBL] [Abstract][Full Text] [Related]
34. pH-Sensitive self-assembling nanoparticles for tumor near-infrared fluorescence imaging and chemo-photodynamic combination therapy. Hou W; Zhao X; Qian X; Pan F; Zhang C; Yang Y; de la Fuente JM; Cui D Nanoscale; 2016 Jan; 8(1):104-16. PubMed ID: 26607263 [TBL] [Abstract][Full Text] [Related]
35. Oxygen Self-Supplied Perfluorocarbon-Modified Micelles for Enhanced Cancer Photodynamic Therapy and Ferroptosis. Ren H; Hao M; Liu G; Li J; Jiang Z; Meng W; Zhang Y ACS Appl Bio Mater; 2024 May; 7(5):3306-3315. PubMed ID: 38634490 [TBL] [Abstract][Full Text] [Related]
36. Self-assembled IR dye/mitoxantrone loaded Porphysomes nanosystem for enhanced combinatorial chemo-photothermal cancer therapy. Pebam M; Khatun S; Ali MS; Srivastava A; Rengan AK Colloids Surf B Biointerfaces; 2024 Sep; 241():113985. PubMed ID: 38838443 [TBL] [Abstract][Full Text] [Related]
37. Development of redox-responsive theranostic nanoparticles for near-infrared fluorescence imaging-guided photodynamic/chemotherapy of tumor. Yang X; Shi X; Ji J; Zhai G Drug Deliv; 2018 Nov; 25(1):780-796. PubMed ID: 29542333 [TBL] [Abstract][Full Text] [Related]
38. Ferroptosis Promotes Photodynamic Therapy: Supramolecular Photosensitizer-Inducer Nanodrug for Enhanced Cancer Treatment. Zhu T; Shi L; Yu C; Dong Y; Qiu F; Shen L; Qian Q; Zhou G; Zhu X Theranostics; 2019; 9(11):3293-3307. PubMed ID: 31244955 [TBL] [Abstract][Full Text] [Related]
39. PSMA-targeted melanin-like nanoparticles as a multifunctional nanoplatform for prostate cancer theranostics. Dai L; Shen G; Wang Y; Yang P; Wang H; Liu Z J Mater Chem B; 2021 Jan; 9(4):1151-1161. PubMed ID: 33434248 [TBL] [Abstract][Full Text] [Related]