These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
396 related articles for article (PubMed ID: 31887678)
1. Hyperspectral imaging technology combined with deep forest model to identify frost-damaged rice seeds. Zhang L; Sun H; Rao Z; Ji H Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 229():117973. PubMed ID: 31887678 [TBL] [Abstract][Full Text] [Related]
2. NIR Hyperspectral Imaging Technology Combined with Multivariate Methods to Study the Residues of Different Concentrations of Omethoate on Wheat Grain Surface. Zhang L; Rao Z; Ji H Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31319577 [TBL] [Abstract][Full Text] [Related]
3. The Classification of Rice Blast Resistant Seed Based on Ranman Spectroscopy and SVM. He Y; Zhang W; Ma Y; Li J; Ma B Molecules; 2022 Jun; 27(13):. PubMed ID: 35807337 [TBL] [Abstract][Full Text] [Related]
4. Discrimination of internal crack for rice seeds using near infrared spectroscopy. Wang L; Wang W; Huang Z; Zhen S; Wang R Spectrochim Acta A Mol Biomol Spectrosc; 2024 Oct; 319():124578. PubMed ID: 38833887 [TBL] [Abstract][Full Text] [Related]
5. Rapid and Nondestructive Measurement of Rice Seed Vitality of Different Years Using Near-Infrared Hyperspectral Imaging. He X; Feng X; Sun D; Liu F; Bao Y; He Y Molecules; 2019 Jun; 24(12):. PubMed ID: 31207950 [TBL] [Abstract][Full Text] [Related]
6. [Identification of Pummelo Cultivars Based on Hyperspectral Imaging Technology]. Li XL; Yi SL; He SL; Lü Q; Xie RJ; Zheng YQ; Deng L Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Sep; 35(9):2639-43. PubMed ID: 26669182 [TBL] [Abstract][Full Text] [Related]
7. Hyperspectral imaging for accurate determination of rice variety using a deep learning network with multi-feature fusion. Weng S; Tang P; Yuan H; Guo B; Yu S; Huang L; Xu C Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jun; 234():118237. PubMed ID: 32200232 [TBL] [Abstract][Full Text] [Related]
8. Hyperspectral prediction of sugarbeet seed germination based on gauss kernel SVM. Yang J; Sun L; Xing W; Feng G; Bai H; Wang J Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 253():119585. PubMed ID: 33662700 [TBL] [Abstract][Full Text] [Related]
9. [Discrimination of Varieties of Cabbage with Near Infrared Spectra Based on Principal Component Analysis and Successive Projections Algorithm]. Luo W; Du YZ; Zhang HL Guang Pu Xue Yu Guang Pu Fen Xi; 2016 Nov; 36(11):3536-41. PubMed ID: 30198665 [TBL] [Abstract][Full Text] [Related]
10. Recognition of maize seed varieties based on hyperspectral imaging technology and integrated learning algorithms. Yang H; Wang C; Zhang H; Zhou Y; Luo B PeerJ Comput Sci; 2023; 9():e1354. PubMed ID: 37346683 [TBL] [Abstract][Full Text] [Related]
11. Identification of Soybean Seed Varieties Based on Hyperspectral Imaging Technology. Zhu S; Chao M; Zhang J; Xu X; Song P; Zhang J; Huang Z Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795146 [TBL] [Abstract][Full Text] [Related]
12. Classification of Frozen Corn Seeds Using Hyperspectral VIS/NIR Reflectence Imaging. Zhang J; Dai L; Cheng F Molecules; 2019 Jan; 24(1):. PubMed ID: 30609734 [TBL] [Abstract][Full Text] [Related]
13. Discrimination of CRISPR/Cas9-induced mutants of rice seeds using near-infrared hyperspectral imaging. Feng X; Peng C; Chen Y; Liu X; Feng X; He Y Sci Rep; 2017 Nov; 7(1):15934. PubMed ID: 29162881 [TBL] [Abstract][Full Text] [Related]
14. Hyperspectral imaging coupled with multivariate methods for seed vitality estimation and forecast for Quercus variabilis. Pang L; Wang J; Men S; Yan L; Xiao J Spectrochim Acta A Mol Biomol Spectrosc; 2021 Jan; 245():118888. PubMed ID: 32947159 [TBL] [Abstract][Full Text] [Related]
15. Identification of Rice Varieties and Transgenic Characteristics Based on Near-Infrared Diffuse Reflectance Spectroscopy and Chemometrics. Hao Y; Geng P; Wu W; Wen Q; Rao M Molecules; 2019 Dec; 24(24):. PubMed ID: 31847134 [TBL] [Abstract][Full Text] [Related]
16. Study on the identification of resistance of rice blast based on near infrared spectroscopy. He Y; Zhao X; Zhang W; He X; Tong L Spectrochim Acta A Mol Biomol Spectrosc; 2022 Feb; 266():120439. PubMed ID: 34601366 [TBL] [Abstract][Full Text] [Related]
17. Sugarbeet Seed Germination Prediction Using Hyperspectral Imaging Information Fusion. Wang J; Sun L; Xing W; Feng G; Yang J; Li J; Li W Appl Spectrosc; 2023 Jul; 77(7):710-722. PubMed ID: 37246428 [TBL] [Abstract][Full Text] [Related]
18. Rapid and nondestructive watermelon (Citrullus lanatus) seed viability detection based on visible near-infrared hyperspectral imaging technology and machine learning algorithms. Sun J; Nirere A; Dusabe KD; Yuhao Z; Adrien G J Food Sci; 2024 Jul; 89(7):4403-4418. PubMed ID: 38957090 [TBL] [Abstract][Full Text] [Related]
19. Rice seed cultivar identification using near-infrared hyperspectral imaging and multivariate data analysis. Kong W; Zhang C; Liu F; Nie P; He Y Sensors (Basel); 2013 Jul; 13(7):8916-27. PubMed ID: 23857260 [TBL] [Abstract][Full Text] [Related]
20. [Variety recognition of Chinese cabbage seeds by hyperspectral imaging combined with machine learning]. Cheng SX; Kong WW; Zhang C; Liu F; He Y Guang Pu Xue Yu Guang Pu Fen Xi; 2014 Sep; 34(9):2519-22. PubMed ID: 25532356 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]