These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 31887707)

  • 21. Inoculation of soil with cadmium-resistant bacterium Delftia sp. B9 reduces cadmium accumulation in rice (Oryza sativa L.) grains.
    Liu Y; Tie B; Li Y; Lei M; Wei X; Liu X; Du H
    Ecotoxicol Environ Saf; 2018 Nov; 163():223-229. PubMed ID: 30055387
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity.
    Manousaki E; Kalogerakis N
    Environ Sci Pollut Res Int; 2009 Nov; 16(7):844-54. PubMed ID: 19597858
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Equilibrium, kinetic, and thermodynamic biosorption of Pb(II), Cr(III), and Cd(II) ions by dead anaerobic biomass from synthetic wastewater.
    Sulaymon AH; Ebrahim SE; Mohammed-Ridha MJ
    Environ Sci Pollut Res Int; 2013 Jan; 20(1):175-87. PubMed ID: 22427177
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determination of the phytoremediation efficiency of Ricinus communis L. and methane uptake from cadmium and nickel-contaminated soil using spent mushroom substrate.
    Sun Y; Wen C; Liang X; He C
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32603-32616. PubMed ID: 30242654
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modification-bioremediation of copper, lead, and cadmium-contaminated soil by combined ryegrass (Lolium multiflorum Lam.) and Pseudomonas aeruginosa treatment.
    Shi GY; Yan YJ; Yu ZQ; Zhang L; Cheng YY; Shi WL
    Environ Sci Pollut Res Int; 2020 Oct; 27(30):37668-37676. PubMed ID: 32608000
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bioaccumulation of cadmium by Enterobacter sp. and enhancement of rice seedling growth under cadmium stress.
    Mitra S; Pramanik K; Sarkar A; Ghosh PK; Soren T; Maiti TK
    Ecotoxicol Environ Saf; 2018 Jul; 156():183-196. PubMed ID: 29550436
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Encapsulation of living bacteria in electrospun cyclodextrin ultrathin fibers for bioremediation of heavy metals and reactive dye from wastewater.
    San Keskin NO; Celebioglu A; Sarioglu OF; Uyar T; Tekinay T
    Colloids Surf B Biointerfaces; 2018 Jan; 161():169-176. PubMed ID: 29078166
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toxicity evaluation of textile effluents and role of native soil bacterium in biodegradation of a textile dye.
    Khan S; Malik A
    Environ Sci Pollut Res Int; 2018 Feb; 25(5):4446-4458. PubMed ID: 29185221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater.
    Kamika I; Momba MN
    BMC Microbiol; 2013 Feb; 13():28. PubMed ID: 23387904
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterisation of heavy metal tolerance and biosorption capacity of bacterium strain CPB4 (Bacillus spp.).
    Kim SU; Cheong YH; Seo DC; Hur JS; Heo JS; Cho JS
    Water Sci Technol; 2007; 55(1-2):105-11. PubMed ID: 17305129
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Whole genome sequencing and comparative genomic analyses of Pseudomonas aeruginosa strain isolated from arable soil reveal novel insights into heavy metal resistance and codon biology.
    Saha J; Dey S; Pal A
    Curr Genet; 2022 Aug; 68(3-4):481-503. PubMed ID: 35763098
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effective removal of heavy metals from industrial effluent wastewater by a multi metal and drug resistant Pseudomonas aeruginosa strain RA-14 using integrated sequencing batch reactor.
    Al-Ansari MM; Benabdelkamel H; AlMalki RH; Abdel Rahman AM; Alnahmi E; Masood A; Ilavenil S; Choi KC
    Environ Res; 2021 Aug; 199():111240. PubMed ID: 33974838
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioremediation of cadmium- and zinc-contaminated soil using Rhodobacter sphaeroides.
    Peng W; Li X; Song J; Jiang W; Liu Y; Fan W
    Chemosphere; 2018 Apr; 197():33-41. PubMed ID: 29331716
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Strain-specific bioaccumulation and intracellular distribution of Cd²⁺ in bacteria isolated from the rhizosphere, ectomycorrhizae, and fruitbodies of ectomycorrhizal fungi.
    Hrynkiewicz K; Złoch M; Kowalkowski T; Baum C; Niedojadło K; Buszewski B
    Environ Sci Pollut Res Int; 2015 Feb; 22(4):3055-67. PubMed ID: 25231735
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Possible use of Serratia marcescens in toxic metal biosorption (removal).
    Cristani M; Naccari C; Nostro A; Pizzimenti A; Trombetta D; Pizzimenti F
    Environ Sci Pollut Res Int; 2012 Jan; 19(1):161-8. PubMed ID: 21701862
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of Simplicillium chinense for Cd and Pb biosorption and enhancing heavy metal phytoremediation of soils.
    Jin Z; Deng S; Wen Y; Jin Y; Pan L; Zhang Y; Black T; Jones KC; Zhang H; Zhang D
    Sci Total Environ; 2019 Dec; 697():134148. PubMed ID: 31479903
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms for metal removal established via electron microscopy and spectroscopy: a case study on metal tolerant fungi Penicillium simplicissimum.
    Chen SH; Cheow YL; Ng SL; Ting ASY
    J Hazard Mater; 2019 Jan; 362():394-402. PubMed ID: 30248661
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heavy metal accumulation in Lathyrus sativus growing in contaminated soils and identification of symbiotic resistant bacteria.
    Abdelkrim S; Jebara SH; Saadani O; Chiboub M; Abid G; Mannai K; Jebara M
    Arch Microbiol; 2019 Jan; 201(1):107-121. PubMed ID: 30276423
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Burkholderia sp. Y4 inhibits cadmium accumulation in rice by increasing essential nutrient uptake and preferentially absorbing cadmium.
    Wang C; Huang Y; Yang X; Xue W; Zhang X; Zhang Y; Pang J; Liu Y; Liu Z
    Chemosphere; 2020 Aug; 252():126603. PubMed ID: 32240860
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Existence of a novel heavy metal-tolerant Pseudomonas aeruginosa strain Zambia SZK-17 Kabwe 1: the potential bioremediation agent in the heavy metal-contaminated area.
    Mtengai K; Ramasamy S; Msimuko P; Mzula A; Mwega ED
    Environ Monit Assess; 2022 Oct; 194(12):887. PubMed ID: 36239813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.