BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31887857)

  • 21. Properties of Pickering emulsion stabilized by food-grade gelatin nanoparticles: influence of the nanoparticles concentration.
    Feng X; Dai H; Ma L; Fu Y; Yu Y; Zhou H; Guo T; Zhu H; Wang H; Zhang Y
    Colloids Surf B Biointerfaces; 2020 Dec; 196():111294. PubMed ID: 32768987
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physicochemical properties of dodecenyl succinic anhydride (DDSA) modified quinoa starch.
    Li G; Xu X; Zhu F
    Food Chem; 2019 Dec; 300():125201. PubMed ID: 31357016
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Valorization of unpopped Foxnut starch in stabilizing Pickering emulsion using OSA modification.
    Shweta ; Kumar Y; Saxena DC
    Int J Biol Macromol; 2021 Nov; 191():657-667. PubMed ID: 34582910
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization and stability of short-chain fatty acids modified starch Pickering emulsions.
    Abdul Hadi N; Marefati A; Matos M; Wiege B; Rayner M
    Carbohydr Polym; 2020 Jul; 240():116264. PubMed ID: 32475554
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Feasibility of pomelo peel dietary fiber as natural functional emulsifier for preparation of Pickering-type emulsion.
    Gao K; Liu T; Cao L; Liu Y; Zhang Q; Ruan R; Feng S; Wu X
    J Sci Food Agric; 2022 Aug; 102(11):4491-4499. PubMed ID: 35122272
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterizations of Pickering emulsions stabilized by starch nanoparticles: Influence of starch variety and particle size.
    Ge S; Xiong L; Li M; Liu J; Yang J; Chang R; Liang C; Sun Q
    Food Chem; 2017 Nov; 234():339-347. PubMed ID: 28551245
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Green poly(β-hydroxybutyrate)/starch nanocrystal composites: Tuning the nucleation and spherulite morphology through surface acetylation of starch nanocrystal.
    Zhang G; Wu D; Xie W; Wang Z; Xu C
    Carbohydr Polym; 2018 Sep; 195():79-88. PubMed ID: 29805027
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elucidation of stabilizing oil-in-water Pickering emulsion with different modified maize starch-based nanoparticles.
    Ye F; Miao M; Jiang B; Campanella OH; Jin Z; Zhang T
    Food Chem; 2017 Aug; 229():152-158. PubMed ID: 28372158
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The physical and oxidative stabilities of Pickering emulsion stabilized by starch particle and small molecular surfactant.
    Song X; Zheng F; Ma F; Kang H; Ren H
    Food Chem; 2020 Jan; 303():125391. PubMed ID: 31466030
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of Olive Oil and α-Tocopherol Containing Emulsions Stabilized by FucoPol: Rheological and Textural Analyses.
    Baptista S; Pereira JR; Gil CV; Torres CAV; Reis MAM; Freitas F
    Polymers (Basel); 2022 Jun; 14(12):. PubMed ID: 35745925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Polymeric hollow microcapsules (PHM) via cellulose nanocrystal stabilized Pickering emulsion polymerization.
    Zhang Z; Cheng M; Gabriel MS; Teixeira Neto ÂA; da Silva Bernardes J; Berry R; Tam KC
    J Colloid Interface Sci; 2019 Nov; 555():489-497. PubMed ID: 31401481
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Physical stabilities of taro starch nanoparticles stabilized Pickering emulsions and the potential application of encapsulated tea polyphenols.
    Shao P; Zhang H; Niu B; Jin W
    Int J Biol Macromol; 2018 Oct; 118(Pt B):2032-2039. PubMed ID: 30021133
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Palm olein-in-water Pickering emulsion stabilized by Fe
    Low LE; Tey BT; Ong BH; Chan ES; Tang SY
    Carbohydr Polym; 2017 Jan; 155():391-399. PubMed ID: 27702526
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Stability mechanism of O/W Pickering emulsions stabilized with regenerated cellulose.
    Li Z; Wu H; Yang M; Xu D; Chen J; Feng H; Lu Y; Zhang L; Yu Y; Kang W
    Carbohydr Polym; 2018 Feb; 181():224-233. PubMed ID: 29253967
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chitin nanocrystals-stabilized emulsion as template for fabricating injectable suspension containing polylactide hollow microspheres.
    Yu S; Peng G; Jiao J; Liu P; Li H; Xi J; Wu D
    Carbohydr Polym; 2024 Aug; 337():122176. PubMed ID: 38710562
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dry Ball-Milled Quinoa Starch as a Pickering Emulsifier: Preparation, Microstructures, Hydrophobic Properties and Emulsifying Properties.
    Chen Y; Han X; Chen DL; Ren YP; Yang SY; Huang YX; Yang J; Zhang L
    Foods; 2024 Jan; 13(3):. PubMed ID: 38338566
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of antioxidant Pickering high internal phase emulsions (HIPEs) stabilized by protein/polysaccharide hybrid particles as potential alternative for PHOs.
    Zeng T; Wu ZL; Zhu JY; Yin SW; Tang CH; Wu LY; Yang XQ
    Food Chem; 2017 Sep; 231():122-130. PubMed ID: 28449988
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Highly Surface-Active Chaperonin Nanobarrels for Oil-in-Water Pickering Emulsions and Delivery of Lipophilic Compounds.
    Xu B; Liu C; Sun H; Wang X; Huang F
    J Agric Food Chem; 2019 Sep; 67(36):10155-10164. PubMed ID: 31433944
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein Nanocage as a pH-Switchable Pickering Emulsifier.
    Sarker M; Tomczak N; Lim S
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):11193-11201. PubMed ID: 28290652
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Assessment of dynamic bioaccessibility of curcumin encapsulated in milled starch particle stabilized Pickering emulsions using TNO's gastrointestinal model.
    Lu X; Zhu J; Pan Y; Huang Q
    Food Funct; 2019 May; 10(5):2583-2594. PubMed ID: 31011719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.