These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31887871)

  • 1. The role of physicochemical properties in the nanoprecipitation of cellulose acetate.
    Ghasemi SM; Alavifar SS
    Carbohydr Polym; 2020 Feb; 230():115628. PubMed ID: 31887871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supercritical antisolvent co-precipitation of rifampicin and ethyl cellulose.
    Djerafi R; Swanepoel A; Crampon C; Kalombo L; Labuschagne P; Badens E; Masmoudi Y
    Eur J Pharm Sci; 2017 May; 102():161-171. PubMed ID: 28302396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient approach to design stable water-dispersible nanoparticles of hydrophobic cellulose esters.
    Hornig S; Heinze T
    Biomacromolecules; 2008 May; 9(5):1487-92. PubMed ID: 18393524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous composites based on cellulose acetate and alfa-hematite with optical and antimicrobial properties.
    Silva MA; Rocha CV; Gallo J; Felgueiras HP; de Amorim MTP
    Carbohydr Polym; 2020 Aug; 241():116362. PubMed ID: 32507190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge-controlled nanoprecipitation as a modular approach to ultrasmall polymer nanocarriers: making bright and stable nanoparticles.
    Reisch A; Runser A; Arntz Y; Mély Y; Klymchenko AS
    ACS Nano; 2015 May; 9(5):5104-16. PubMed ID: 25894117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Porous structures of polymer films prepared by spin coating with mixed solvents under humid condition.
    Park MS; Joo W; Kim JK
    Langmuir; 2006 May; 22(10):4594-8. PubMed ID: 16649769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Facile fabrication of pH-responsive nanoparticles from cellulose derivatives via Schiff base formation for controlled release.
    Peng X; Liu P; Pang B; Yao Y; Wang J; Zhang K
    Carbohydr Polym; 2019 Jul; 216():113-118. PubMed ID: 31047047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethylcellulose nanoparticles with bimodal size distribution as precursors for the production of very small nanoparticles.
    Wachsmann P; Lamprecht A
    Drug Dev Ind Pharm; 2015; 41(7):1165-71. PubMed ID: 25000483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermosensitive Gel Containing Cellulose Acetate Phthalate-Efavirenz Combination Nanoparticles for Prevention of HIV-1 Infection.
    Date AA; Shibata A; McMullen E; La Bruzzo K; Bruck P; Belshan M; Zhou Y; Destache CJ
    J Biomed Nanotechnol; 2015 Mar; 11(3):416-27. PubMed ID: 26307825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of dry-state ketoprofen-encapsulated PMMA NPs by coupling micromixer-assisted nanoprecipitation and spray drying.
    Ding S; Serra CA; Anton N; Yu W; Vandamme TF
    Int J Pharm; 2019 Mar; 558():1-8. PubMed ID: 30586630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the nanoprecipitation conditions on the supramolecular structure of squalenoyled nanoparticles.
    Lepeltier E; Bourgaux C; Amenitsch H; Rosilio V; Lepetre-Mouelhi S; Zouhiri F; Desmaële D; Couvreur P
    Eur J Pharm Biopharm; 2015 Oct; 96():89-95. PubMed ID: 26210010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyaluronic acid embedded cellulose acetate phthlate core/shell nanoparticulate carrier of 5-fluorouracil.
    Garg A; Rai G; Lodhi S; Jain AP; Yadav AK
    Int J Biol Macromol; 2016 Jun; 87():449-59. PubMed ID: 26955748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the properties of ethylcellulose microcapsules prepared by emulsion non-solvent addition method in the presence of non-solvent in polymer solution.
    Wu JC; Chen HY; Chen H
    J Microencapsul; 1994; 11(5):519-29. PubMed ID: 7815269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoprecipitation and Spectroscopic Characterization of Curcumin-Encapsulated Polyester Nanoparticles.
    Leung MH; Harada T; Dai S; Kee TW
    Langmuir; 2015 Oct; 31(42):11419-27. PubMed ID: 26439894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional cellulose-based nanofibers with catalytic activity: effect of Ag content and Ag phase.
    Jang KH; Kang YO; Park WH
    Int J Biol Macromol; 2014 Jun; 67():394-400. PubMed ID: 24705168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of conducting cellulose acetate based polymer electrolytes doped with "green" ionic mixture.
    Ramesh S; Shanti R; Morris E
    Carbohydr Polym; 2013 Jan; 91(1):14-21. PubMed ID: 23044100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ethyl cellulose nanoparticles as a platform to decrease ulcerogenic potential of piroxicam: formulation and in vitro/in vivo evaluation.
    El-Habashy SE; Allam AN; El-Kamel AH
    Int J Nanomedicine; 2016; 11():2369-80. PubMed ID: 27307735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoprecipitation of Biocompatible Poly(malic acid) Derivative, Its Ability to Encapsulate a Molecular Photothermal Agent and Photothermal Properties of the Resulting Nanoparticles.
    Vargas Guerrero MG; Pluta JB; Bellec N; Cammas-Marion S; Camerel F
    Molecules; 2021 Dec; 26(24):. PubMed ID: 34946784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic preparation of monodisperse ethyl cellulose hollow microcapsules with non-toxic solvent.
    Liu L; Yang JP; Ju XJ; Xie R; Yang L; Liang B; Chu LY
    J Colloid Interface Sci; 2009 Aug; 336(1):100-6. PubMed ID: 19394626
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.