These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 31887883)

  • 1. Fabrication of hybrid thin film based on bacterial cellulose nanocrystals and metal nanoparticles with hydrogen sulfide gas sensor ability.
    Sukhavattanakul P; Manuspiya H
    Carbohydr Polym; 2020 Feb; 230():115566. PubMed ID: 31887883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of hydrogen sulfide gas concentrations on LOD and LOQ of thermal spray coated hybrid-bacterial cellulose film for intelligent meat label.
    Sukhavattanakul P; Manuspiya H
    Carbohydr Polym; 2021 Feb; 254():117442. PubMed ID: 33357913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new design of colorimetric films using bacterial cellulose nanocrystals derived from nata de coco for sensing volatile organic compounds.
    Srithammaraj K; Than-Ardna B; Sain MM; Manuspiya H
    Int J Biol Macromol; 2024 Aug; 275(Pt 1):133248. PubMed ID: 38908632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of bacterial cellulose nanocrystals: Effect of acid treatments and neutralization.
    Arserim-Uçar DK; Korel F; Liu L; Yam KL
    Food Chem; 2021 Jan; 336():127597. PubMed ID: 32763732
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial cellulose nanocrystals produced under different hydrolysis conditions: Properties and morphological features.
    Vasconcelos NF; Feitosa JP; da Gama FM; Morais JP; Andrade FK; de Souza Filho MS; Rosa MF
    Carbohydr Polym; 2017 Jan; 155():425-431. PubMed ID: 27702531
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel bacterial cellulose nanocrystals/polyether block amide microporous membranes as separators for lithium-ion batteries.
    Ajkidkarn P; Manuspiya H
    Int J Biol Macromol; 2020 Dec; 164():3580-3588. PubMed ID: 32890559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid HPMC nanocomposites containing bacterial cellulose nanocrystals and silver nanoparticles.
    George J; Kumar R; Sajeevkumar VA; Ramana KV; Rajamanickam R; Abhishek V; Nadanasabapathy S; Siddaramaiah
    Carbohydr Polym; 2014 May; 105():285-92. PubMed ID: 24708982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and SERS application of gold and iron oxide functionalized bacterial cellulose nanocrystals (Au@Fe
    Kang S; Rahman A; Boeding E; Vikesland PJ
    Analyst; 2020 Jun; 145(12):4358-4368. PubMed ID: 32500880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nylon-Supported Plasmonic Assay Based on the Aggregation of Silver Nanoparticles: In Situ Determination of Hydrogen Sulfide-like Compounds in Breath Samples as a Proof of Concept.
    Jornet-Martínez N; Hakobyan L; Argente-García AI; Molins-Legua C; Campíns-Falcó P
    ACS Sens; 2019 Aug; 4(8):2164-2172. PubMed ID: 31364364
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent developments in the production and applications of bacterial cellulose fibers and nanocrystals.
    Reiniati I; Hrymak AN; Margaritis A
    Crit Rev Biotechnol; 2017 Jun; 37(4):510-524. PubMed ID: 27248159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of H
    Shahzad N; Azfar RW
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1133-1136. PubMed ID: 27628700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A colorimetric hydrogen sulfide sensor based on gellan gum-silver nanoparticles bionanocomposite for monitoring of meat spoilage in intelligent packaging.
    Zhai X; Li Z; Shi J; Huang X; Sun Z; Zhang D; Zou X; Sun Y; Zhang J; Holmes M; Gong Y; Povey M; Wang S
    Food Chem; 2019 Aug; 290():135-143. PubMed ID: 31000029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amperometric hydrogen peroxide biosensor based on the immobilization of heme proteins on gold nanoparticles-bacteria cellulose nanofibers nanocomposite.
    Wang W; Zhang TJ; Zhang DW; Li HY; Ma YR; Qi LM; Zhou YL; Zhang XX
    Talanta; 2011 Mar; 84(1):71-7. PubMed ID: 21315900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bismuth-Based, Disposable Sensor for the Detection of Hydrogen Sulfide Gas.
    Rosolina SM; Carpenter TS; Xue ZL
    Anal Chem; 2016 Feb; 88(3):1553-8. PubMed ID: 26742539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electroactive Au@Ag nanoparticles driven electrochemical sensor for endogenous H
    Zhao Y; Yang Y; Cui L; Zheng F; Song Q
    Biosens Bioelectron; 2018 Oct; 117():53-59. PubMed ID: 29885580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and characterization of cellulose nanocrystals from bacterial cellulose produced in sugar beet molasses and cheese whey media.
    Salari M; Sowti Khiabani M; Rezaei Mokarram R; Ghanbarzadeh B; Samadi Kafil H
    Int J Biol Macromol; 2019 Feb; 122():280-288. PubMed ID: 30342939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen sulfide gas sensor based on copper/graphene oxide coated multi-node thin-core fiber interferometer.
    Liu S; Yang X; Feng W
    Appl Opt; 2019 Mar; 58(9):2152-2157. PubMed ID: 31044912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioinspired Cocatalysts Decorated WO
    Kim DH; Jang JS; Koo WT; Choi SJ; Cho HJ; Kim MH; Kim SJ; Kim ID
    ACS Sens; 2018 Jun; 3(6):1164-1173. PubMed ID: 29762012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Green in-situ synthesized silver nanoparticles embedded in bacterial cellulose nanopaper as a bionanocomposite plasmonic sensor.
    Pourreza N; Golmohammadi H; Naghdi T; Yousefi H
    Biosens Bioelectron; 2015 Dec; 74():353-9. PubMed ID: 26159156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a detection sensor for lethal H2S gas.
    Park YH; Kim YJ; Lee CS
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5283-9. PubMed ID: 22966558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.