These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 31887925)
1. A dry and fully dispersible bacterial cellulose formulation as a stabilizer for oil-in-water emulsions. Martins D; Estevinho B; Rocha F; Dourado F; Gama M Carbohydr Polym; 2020 Feb; 230():115657. PubMed ID: 31887925 [TBL] [Abstract][Full Text] [Related]
2. Carboxymethyl cellulose/okara protein influencing microstructure, rheological properties and stability of O/W emulsions. Cai Y; Huang L; Tao X; Su J; Chen B; Zhao M; Zhao Q; Van der Meeren P J Sci Food Agric; 2021 Jul; 101(9):3685-3692. PubMed ID: 33301177 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of Surface-Responsive Composite Particles by Dehydration of Water-in-Oil Emulsions. Liang C; Liu Q; Xu Z ACS Appl Mater Interfaces; 2015 Sep; 7(37):20631-9. PubMed ID: 26302364 [TBL] [Abstract][Full Text] [Related]
4. Interfacial biodegradation of phenanthrene in bacteria-carboxymethyl cellulose-stabilized Pickering emulsions. Pan T; Liu C; Wang M; Zhang J Appl Microbiol Biotechnol; 2022 May; 106(9-10):3829-3836. PubMed ID: 35536403 [TBL] [Abstract][Full Text] [Related]
5. Development of food-grade Pickering emulsions stabilized by a biological macromolecule (xanthan gum) and zein. Santos J; Alcaide-González MA; Trujillo-Cayado LA; Carrillo F; Alfaro-Rodríguez MC Int J Biol Macromol; 2020 Jun; 153():747-754. PubMed ID: 32171827 [TBL] [Abstract][Full Text] [Related]
7. Effects of thickening agents on the formation and properties of edible oleogels based on hydroxypropyl methyl cellulose. Meng Z; Qi K; Guo Y; Wang Y; Liu Y Food Chem; 2018 Apr; 246():137-149. PubMed ID: 29291832 [TBL] [Abstract][Full Text] [Related]
8. Emulsions stabilized by nanofibers from bacterial cellulose: New potential food-grade Pickering emulsions. Zhai X; Lin D; Liu D; Yang X Food Res Int; 2018 Jan; 103():12-20. PubMed ID: 29389597 [TBL] [Abstract][Full Text] [Related]
9. Redispersible Pickering emulsion powder stabilized by nanocrystalline cellulose combining with cellulosic derivatives. Xie J; Luo Y; Chen Y; Liu Y; Ma Y; Zheng Q; Yue P; Yang M Carbohydr Polym; 2019 Jun; 213():128-137. PubMed ID: 30879652 [TBL] [Abstract][Full Text] [Related]
10. Soy protein isolate/carboxymethyl cellulose sodium complexes system stabilized high internal phase Pickering emulsions: Stabilization mechanism based on noncovalent interaction. Sun F; Cheng T; Ren S; Yang B; Liu J; Huang Z; Guo Z; Wang Z Int J Biol Macromol; 2024 Jan; 256(Pt 1):128381. PubMed ID: 38000596 [TBL] [Abstract][Full Text] [Related]
11. Influence of the molecular weight of carboxymethylcellulose on properties and stability of whey protein-stabilized oil-in-water emulsions. Huan Y; Zhang S; Vardhanabhuti B J Dairy Sci; 2016 May; 99(5):3305-3315. PubMed ID: 26947286 [TBL] [Abstract][Full Text] [Related]
12. Development of food emulsions containing an advanced performance xanthan gum by microfluidization technique. Santos J; Calero N; Muñoz J; Cidade MT Food Sci Technol Int; 2018 Jul; 24(5):373-381. PubMed ID: 29417842 [TBL] [Abstract][Full Text] [Related]
13. Modulating hydrophilic properties of β-cyclodextrin/carboxymethyl cellulose colloid particles to stabilize Pickering emulsions for food 3D printing. Guo Z; Li Z; Cen S; Liang N; Muhammad A; Tahir HE; Shi J; Huang X; Zou X Carbohydr Polym; 2023 Aug; 313():120764. PubMed ID: 37182940 [TBL] [Abstract][Full Text] [Related]
14. Purification, characterization and comparative studies of spray-dried bacterial cellulose microparticles. Amin MC; Abadi AG; Katas H Carbohydr Polym; 2014 Jan; 99():180-9. PubMed ID: 24274495 [TBL] [Abstract][Full Text] [Related]
15. Depletion stabilization of emulsions based on bacterial cellulose/carboxymethyl chitosan complexes. Zhang Y; Yang S; Tang H; Wan S; Qin W; Zeng Q; Huang J; Yu G; Feng Y; Li J Carbohydr Polym; 2022 Dec; 297():119904. PubMed ID: 36184125 [TBL] [Abstract][Full Text] [Related]
16. Influence of polysaccharides on the rate of coalescence in oil-in-water emulsions formed with highly hydrolyzed whey proteins. Ye A; Hemar Y; Singh H J Agric Food Chem; 2004 Aug; 52(17):5491-8. PubMed ID: 15315390 [TBL] [Abstract][Full Text] [Related]
17. Spray dried double emulsions containing procyanidin-rich extracts produced by premix membrane emulsification: effect of interfacial composition. Berendsen R; Güell C; Ferrando M Food Chem; 2015 Jul; 178():251-8. PubMed ID: 25704709 [TBL] [Abstract][Full Text] [Related]
18. Dual Functions of TEMPO-Oxidized Cellulose Nanofibers in Oil-in-Water Emulsions: A Pickering Emulsifier and a Unique Dispersion Stabilizer. Goi Y; Fujisawa S; Saito T; Yamane K; Kuroda K; Isogai A Langmuir; 2019 Aug; 35(33):10920-10926. PubMed ID: 31340122 [TBL] [Abstract][Full Text] [Related]
19. In vitro digestibility and release of a mango peel extract encapsulated within water-in-oil-in-water (W Velderrain-Rodríguez GR; Salvia-Trujillo L; Wall-Medrano A; González-Aguilar GA; Martín-Belloso O Food Funct; 2019 Sep; 10(9):6110-6120. PubMed ID: 31495859 [TBL] [Abstract][Full Text] [Related]
20. Biopolymer-based structuring of liquid oil into soft solids and oleogels using water-continuous emulsions as templates. Patel AR; Rajarethinem PS; Cludts N; Lewille B; De Vos WH; Lesaffer A; Dewettinck K Langmuir; 2015 Feb; 31(7):2065-73. PubMed ID: 25133865 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]