These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 31888210)

  • 21. Analysis of explosives using corona discharge ionization combined with ion mobility spectrometry-mass spectrometry.
    Lee J; Park S; Cho SG; Goh EM; Lee S; Koh SS; Kim J
    Talanta; 2014 Mar; 120():64-70. PubMed ID: 24468343
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Temperature dependent characterization of terahertz vibrations of explosives and related threat materials.
    Melinger JS; Harsha SS; Laman N; Grischkowsky D
    Opt Express; 2010 Dec; 18(26):27238-50. PubMed ID: 21197001
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PETN ignition experiments and models.
    Hobbs ML; Wente WB; Kaneshige MJ
    J Phys Chem A; 2010 Apr; 114(16):5306-19. PubMed ID: 20361790
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Common explosives (TNT, RDX, HMX) and their fate in the environment: Emphasizing bioremediation.
    Chatterjee S; Deb U; Datta S; Walther C; Gupta DK
    Chemosphere; 2017 Oct; 184():438-451. PubMed ID: 28618276
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering the microstructure of organic energetic materials.
    Zhang G; Sun H; Abbott JM; Weeks BL
    ACS Appl Mater Interfaces; 2009 May; 1(5):1086-9. PubMed ID: 20355895
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Determining the effects of routine fingermark detection techniques on the subsequent recovery and analysis of explosive residues on various substrates.
    King S; Benson S; Kelly T; Lennard C
    Forensic Sci Int; 2013 Dec; 233(1-3):257-64. PubMed ID: 24314527
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of explosives with two-dimensional ultraviolet resonance Raman spectroscopy.
    Comanescu G; Manka CK; Grun J; Nikitin S; Zabetakis D
    Appl Spectrosc; 2008 Aug; 62(8):833-9. PubMed ID: 18702854
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineering the Microstructure and Morphology of Explosive Films
    Forrest EC; Knepper R; Brumbach MT; Rodriguez MA; Archuleta K; Marquez MP; Tappan AS
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1670-1681. PubMed ID: 33351583
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anharmonic vibrational properties of explosives from temperature-dependent Raman.
    McGrane SD; Barber J; Quenneville J
    J Phys Chem A; 2005 Nov; 109(44):9919-27. PubMed ID: 16838908
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational analysis of mesoscale thermomechanical ignition behavior of impacted LLM-105 based explosives.
    Wang X; Hu W; Wu Y; Huang F
    RSC Adv; 2019 May; 9(28):16095-16105. PubMed ID: 35521386
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Trends in explosive contamination.
    Oxley JC; Smith JL; Resende E; Pearce E; Chamberlain T
    J Forensic Sci; 2003 Mar; 48(2):334-42. PubMed ID: 12664991
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Fast Liquid Chromatography Tandem Mass Spectrometric Analysis of PETN (Pentaerythritol Tetranitrate), RDX (3,5-Trinitro-1,3,5-triazacyclohexane) and HMX (Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) in Soil, Utilizing a Simple Ultrasonic-Assisted Extraction with Minimum Solvent.
    Anilanmert B; Aydin M; Apak R; Avci GY; Cengiz S
    Anal Sci; 2016; 32(6):611-6. PubMed ID: 27302580
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of Ignition Sites for the Explosives 3,3'-Diamino-4,4'-azoxyfurazan (DAAF) and 1,3,5,7-Tetranitro-1,3,5,7-tetrazoctane (HMX) Using Crush Gun Impact Testing.
    Lease N; Holmes MD; Englert-Erickson MA; Kay LM; Francois EG; Manner VW
    ACS Mater Au; 2021 Nov; 1(2):116-129. PubMed ID: 36855395
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A numerical study of the influence of ammonia addition on the auto-ignition limits of methane/air mixtures.
    Van den Schoor F; Norman F; Vandebroek L; Verplaetsen F; Berghmans J
    J Hazard Mater; 2009 May; 164(2-3):1164-70. PubMed ID: 18926632
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular dynamics study of the structures and properties of RDX/GAP propellant.
    Li M; Li F; Shen R; Guo X
    J Hazard Mater; 2011 Feb; 186(2-3):2031-6. PubMed ID: 21237558
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computer simulation for the study of the liquid chromatographic separation of explosive molecules.
    Liu CW; Kuo BC; Liu MH; Huang YR; Chen CL
    J Mol Graph Model; 2018 Oct; 85():331-339. PubMed ID: 30292170
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Persistence of 2,4,6-triamino-1,3,5-trinitrobenzene in the environment.
    Christian O; Spencer M; Ladyman M; Persico F; Gutierrez-Carazo E; Kadansky E; Temple T
    Environ Res; 2023 Dec; 239(Pt 1):117378. PubMed ID: 37832768
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Micellar extraction and high performance liquid chromatography-ultra violet determination of some explosives in water samples.
    Babaee S; Beiraghi A
    Anal Chim Acta; 2010 Mar; 662(1):9-13. PubMed ID: 20152259
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of molecular structure on the laser-induced plasma emission of the explosive RDX and organic polymers.
    De Lucia FC; Gottfried JL
    J Phys Chem A; 2013 Oct; 117(39):9555-63. PubMed ID: 23862752
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 2,4,6-triamino-1,3,5-trinitrobenzene (TATB) and TATB-based formulations--a review.
    Boddu VM; Viswanath DS; Ghosh TK; Damavarapu R
    J Hazard Mater; 2010 Sep; 181(1-3):1-8. PubMed ID: 20554109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.