These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31888433)

  • 1. PCA via joint graph Laplacian and sparse constraint: Identification of differentially expressed genes and sample clustering on gene expression data.
    Feng CM; Xu Y; Hou MX; Dai LY; Shang JL
    BMC Bioinformatics; 2019 Dec; 20(Suppl 22):716. PubMed ID: 31888433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Principal Component Analysis Based on Graph Laplacian and Double Sparse Constraints for Feature Selection and Sample Clustering on Multi-View Data.
    Wu MJ; Gao YL; Liu JX; Zhu R; Wang J
    Hum Hered; 2019; 84(1):47-58. PubMed ID: 31466072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-cancer samples clustering via graph regularized low-rank representation method under sparse and symmetric constraints.
    Wang J; Lu CH; Liu JX; Dai LY; Kong XZ
    BMC Bioinformatics; 2019 Dec; 20(Suppl 22):718. PubMed ID: 31888442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PCA Based on Graph Laplacian Regularization and P-Norm for Gene Selection and Clustering.
    Feng CM; Gao YL; Liu JX; Zheng CH; Yu J
    IEEE Trans Nanobioscience; 2017 Jun; 16(4):257-265. PubMed ID: 28371780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint Lp-Norm and L
    Kong XZ; Song Y; Liu JX; Zheng CH; Yuan SS; Wang J; Dai LY
    Front Genet; 2021; 12():621317. PubMed ID: 33708239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Mixed-Norm Laplacian Regularized Low-Rank Representation Method for Tumor Samples Clustering.
    Wang J; Liu JX; Zheng CH; Wang YX; Kong XZ; Wen CG
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):172-182. PubMed ID: 29990217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cancer Subtype Recognition Based on Laplacian Rank Constrained Multiview Clustering.
    Ge S; Wang X; Cheng Y; Liu J
    Genes (Basel); 2021 Apr; 12(4):. PubMed ID: 33916856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Joint
    Feng CM; Gao YL; Liu JX; Wang J; Wang DQ; Wen CG
    Biomed Res Int; 2017; 2017():5073427. PubMed ID: 28470011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Low-Rank Representation Method Regularized by Dual-Hypergraph Laplacian for Selecting Differentially Expressed Genes.
    Xu XX; Dai LY; Kong XZ; Liu JX
    Hum Hered; 2019; 84(1):21-33. PubMed ID: 31466058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust hypergraph regularized non-negative matrix factorization for sample clustering and feature selection in multi-view gene expression data.
    Yu N; Gao YL; Liu JX; Wang J; Shang J
    Hum Genomics; 2019 Oct; 13(Suppl 1):46. PubMed ID: 31639067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrative Hypergraph Regularization Principal Component Analysis for Sample Clustering and Co-Expression Genes Network Analysis on Multi-Omics Data.
    Wu MJ; Gao YL; Liu JX; Zheng CH; Wang J
    IEEE J Biomed Health Inform; 2020 Jun; 24(6):1823-1834. PubMed ID: 31634852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sparse robust graph-regularized non-negative matrix factorization based on correntropy.
    Wang CY; Gao YL; Liu JX; Dai LY; Shang J
    J Bioinform Comput Biol; 2021 Feb; 19(1):2050047. PubMed ID: 33410727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LJELSR: A Strengthened Version of JELSR for Feature Selection and Clustering.
    Wu SS; Hou MX; Feng CM; Liu JX
    Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30781701
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor clustering using nonnegative matrix factorization with gene selection.
    Zheng CH; Huang DS; Zhang L; Kong XZ
    IEEE Trans Inf Technol Biomed; 2009 Jul; 13(4):599-607. PubMed ID: 19369170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear dimensionality reduction of gene expression data for visualization and clustering analysis of cancer tissue samples.
    Shi J; Luo Z
    Comput Biol Med; 2010 Aug; 40(8):723-32. PubMed ID: 20637456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sparse Principal Component Analysis via Rotation and Truncation.
    Hu Z; Pan G; Wang Y; Wu Z
    IEEE Trans Neural Netw Learn Syst; 2016 Apr; 27(4):875-90. PubMed ID: 26841416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust Principal Component Analysis Based On Hypergraph Regularization for Sample Clustering and Co-Characteristic Gene Selection.
    Gao YL; Wu MJ; Liu JX; Zheng CH; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(4):2420-2430. PubMed ID: 33690124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust Principal Component Analysis Regularized by Truncated Nuclear Norm for Identifying Differentially Expressed Genes.
    Wang YX; Gao YL; Liu JX; Kong XZ; Li HJ
    IEEE Trans Nanobioscience; 2017 Sep; 16(6):447-454. PubMed ID: 28692983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing Characteristic Gene Selection and Tumor Classification by the Robust Laplacian Supervised Discriminative Sparse PCA.
    Zhang LX; Yan H; Liu Y; Xu J; Song J; Yu DJ
    J Chem Inf Model; 2022 Apr; 62(7):1794-1807. PubMed ID: 35353532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of genes and pathways involved in kidney renal clear cell carcinoma.
    Yang W; Yoshigoe K; Qin X; Liu JS; Yang JY; Niemierko A; Deng Y; Liu Y; Dunker A; Chen Z; Wang L; Xu D; Arabnia HR; Tong W; Yang M
    BMC Bioinformatics; 2014; 15 Suppl 17(Suppl 17):S2. PubMed ID: 25559354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.