These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 31888454)

  • 1. ManiNetCluster: a novel manifold learning approach to reveal the functional links between gene networks.
    Nguyen ND; Blaby IK; Wang D
    BMC Genomics; 2019 Dec; 20(Suppl 12):1003. PubMed ID: 31888454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans.
    Castro JC; Valdés I; Gonzalez-García LN; Danies G; Cañas S; Winck FV; Ñústez CE; Restrepo S; Riaño-Pachón DM
    Theor Biol Med Model; 2019 Apr; 16(1):7. PubMed ID: 30961611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ChlamyNET: a Chlamydomonas gene co-expression network reveals global properties of the transcriptome and the early setup of key co-expression patterns in the green lineage.
    Romero-Campero FJ; Perez-Hurtado I; Lucas-Reina E; Romero JM; Valverde F
    BMC Genomics; 2016 Mar; 17():227. PubMed ID: 26968660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient algorithms to discover alterations with complementary functional association in cancer.
    Sarto Basso R; Hochbaum DS; Vandin F
    PLoS Comput Biol; 2019 May; 15(5):e1006802. PubMed ID: 31120875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiview learning for understanding functional multiomics.
    Nguyen ND; Wang D
    PLoS Comput Biol; 2020 Apr; 16(4):e1007677. PubMed ID: 32240163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Whole transcriptomic network analysis using Co-expression Differential Network Analysis (CoDiNA).
    Morselli Gysi D; de Miranda Fragoso T; Zebardast F; Bertoli W; Busskamp V; Almaas E; Nowick K
    PLoS One; 2020; 15(10):e0240523. PubMed ID: 33057419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsic-overlapping co-expression module detection with application to Alzheimer's Disease.
    Manners HN; Roy S; Kalita JK
    Comput Biol Chem; 2018 Dec; 77():373-389. PubMed ID: 30466046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scGRNom: a computational pipeline of integrative multi-omics analyses for predicting cell-type disease genes and regulatory networks.
    Jin T; Rehani P; Ying M; Huang J; Liu S; Roussos P; Wang D
    Genome Med; 2021 May; 13(1):95. PubMed ID: 34044854
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MasterPATH: network analysis of functional genomics screening data.
    Rubanova N; Pinna G; Kropp J; Campalans A; Radicella JP; Polesskaya A; Harel-Bellan A; Morozova N
    BMC Genomics; 2020 Sep; 21(1):632. PubMed ID: 32928103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systems level analysis of the Chlamydomonas reinhardtii metabolic network reveals variability in evolutionary co-conservation.
    Chaiboonchoe A; Ghamsari L; Dohai B; Ng P; Khraiwesh B; Jaiswal A; Jijakli K; Koussa J; Nelson DR; Cai H; Yang X; Chang RL; Papin J; Yu H; Balaji S; Salehi-Ashtiani K
    Mol Biosyst; 2016 Jul; 12(8):2394-407. PubMed ID: 27357594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cross-organism learning method to discover new gene functionalities.
    Domeniconi G; Masseroli M; Moro G; Pinoli P
    Comput Methods Programs Biomed; 2016 Apr; 126():20-34. PubMed ID: 26724853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cancer driver gene discovery in transcriptional regulatory networks using influence maximization approach.
    Rahimi M; Teimourpour B; Marashi SA
    Comput Biol Med; 2019 Nov; 114():103362. PubMed ID: 31561101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A cross-species bi-clustering approach to identifying conserved co-regulated genes.
    Sun J; Jiang Z; Tian X; Bi J
    Bioinformatics; 2016 Jun; 32(12):i137-i146. PubMed ID: 27307610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IntLIM: integration using linear models of metabolomics and gene expression data.
    Siddiqui JK; Baskin E; Liu M; Cantemir-Stone CZ; Zhang B; Bonneville R; McElroy JP; Coombes KR; Mathé EA
    BMC Bioinformatics; 2018 Mar; 19(1):81. PubMed ID: 29506475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pathway-based deep clustering for molecular subtyping of cancer.
    Mallavarapu T; Hao J; Kim Y; Oh JH; Kang M
    Methods; 2020 Feb; 173():24-31. PubMed ID: 31247294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SIMLR: A Tool for Large-Scale Genomic Analyses by Multi-Kernel Learning.
    Wang B; Ramazzotti D; De Sano L; Zhu J; Pierson E; Batzoglou S
    Proteomics; 2018 Jan; 18(2):. PubMed ID: 29265724
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of gene regulatory networks: from network reconstruction to evolution.
    Thompson D; Regev A; Roy S
    Annu Rev Cell Dev Biol; 2015; 31():399-428. PubMed ID: 26355593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel network control model for identifying personalized driver genes in cancer.
    Guo WF; Zhang SW; Zeng T; Li Y; Gao J; Chen L
    PLoS Comput Biol; 2019 Nov; 15(11):e1007520. PubMed ID: 31765387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network inference with ensembles of bi-clustering trees.
    Pliakos K; Vens C
    BMC Bioinformatics; 2019 Oct; 20(1):525. PubMed ID: 31660848
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Leveraging multiple gene networks to prioritize GWAS candidate genes via network representation learning.
    Wu M; Zeng W; Liu W; Lv H; Chen T; Jiang R
    Methods; 2018 Aug; 145():41-50. PubMed ID: 29874547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.