BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

819 related articles for article (PubMed ID: 31888461)

  • 1. Human protein-RNA interaction network is highly stable across mammals.
    Ramakrishnan A; Janga SC
    BMC Genomics; 2019 Dec; 20(Suppl 12):1004. PubMed ID: 31888461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissecting the expression relationships between RNA-binding proteins and their cognate targets in eukaryotic post-transcriptional regulatory networks.
    Nishtala S; Neelamraju Y; Janga SC
    Sci Rep; 2016 May; 6():25711. PubMed ID: 27161996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seten: a tool for systematic identification and comparison of processes, phenotypes, and diseases associated with RNA-binding proteins from condition-specific CLIP-seq profiles.
    Budak G; Srivastava R; Janga SC
    RNA; 2017 Jun; 23(6):836-846. PubMed ID: 28336542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CLIPdb: a CLIP-seq database for protein-RNA interactions.
    Yang YC; Di C; Hu B; Zhou M; Liu Y; Song N; Li Y; Umetsu J; Lu ZJ
    BMC Genomics; 2015 Feb; 16(1):51. PubMed ID: 25652745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transcriptome-wide high-throughput mapping of protein-RNA occupancy profiles using POP-seq.
    Srivastava M; Srivastava R; Janga SC
    Sci Rep; 2021 Jan; 11(1):1175. PubMed ID: 33441968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Principles of RNA processing from analysis of enhanced CLIP maps for 150 RNA binding proteins.
    Van Nostrand EL; Pratt GA; Yee BA; Wheeler EC; Blue SM; Mueller J; Park SS; Garcia KE; Gelboin-Burkhart C; Nguyen TB; Rabano I; Stanton R; Sundararaman B; Wang R; Fu XD; Graveley BR; Yeo GW
    Genome Biol; 2020 Apr; 21(1):90. PubMed ID: 32252787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transposable elements modulate human RNA abundance and splicing via specific RNA-protein interactions.
    Kelley DR; Hendrickson DG; Tenen D; Rinn JL
    Genome Biol; 2014 Dec; 15(12):537. PubMed ID: 25572935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CLIP-Seq in Bacteria: Global Recognition Patterns of Bacterial RNA-Binding Proteins.
    Andresen L; Holmqvist E
    Methods Enzymol; 2018; 612():127-145. PubMed ID: 30502939
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping the Transcriptome-Wide Landscape of RBP Binding Sites Using gPAR-CLIP-seq: Experimental Procedures.
    Han T; Kim JK
    Methods Mol Biol; 2016; 1361():77-90. PubMed ID: 26483017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In silico characterization and prediction of global protein-mRNA interactions in yeast.
    Pancaldi V; Bähler J
    Nucleic Acids Res; 2011 Aug; 39(14):5826-36. PubMed ID: 21459850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interplay between posttranscriptional and posttranslational interactions of RNA-binding proteins.
    Mittal N; Scherrer T; Gerber AP; Janga SC
    J Mol Biol; 2011 Jun; 409(3):466-79. PubMed ID: 21501624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PAR-CliP--a method to identify transcriptome-wide the binding sites of RNA binding proteins.
    Hafner M; Landthaler M; Burger L; Khorshid M; Hausser J; Berninger P; Rothballer A; Ascano M; Jungkamp AC; Munschauer M; Ulrich A; Wardle GS; Dewell S; Zavolan M; Tuschl T
    J Vis Exp; 2010 Jul; (41):. PubMed ID: 20644507
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-Scale Profiling of RBP-circRNA Interactions from Public CLIP-Seq Datasets.
    Zhang M; Wang T; Xiao G; Xie Y
    Genes (Basel); 2020 Jan; 11(1):. PubMed ID: 31947823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissecting the expression dynamics of RNA-binding proteins in posttranscriptional regulatory networks.
    Mittal N; Roy N; Babu MM; Janga SC
    Proc Natl Acad Sci U S A; 2009 Dec; 106(48):20300-5. PubMed ID: 19918083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A deep learning framework for modeling structural features of RNA-binding protein targets.
    Zhang S; Zhou J; Hu H; Gong H; Chen L; Cheng C; Zeng J
    Nucleic Acids Res; 2016 Feb; 44(4):e32. PubMed ID: 26467480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of clustered RNA-binding protein motif sites in the mammalian genome.
    Zhang C; Lee KY; Swanson MS; Darnell RB
    Nucleic Acids Res; 2013 Aug; 41(14):6793-807. PubMed ID: 23685613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bioinformatic survey of RNA-binding proteins in Plasmodium.
    Reddy BP; Shrestha S; Hart KJ; Liang X; Kemirembe K; Cui L; Lindner SE
    BMC Genomics; 2015 Nov; 16():890. PubMed ID: 26525978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome-wide profiles of circular RNA and RNA-binding protein interactions reveal effects on circular RNA biogenesis and cancer pathway expression.
    Okholm TLH; Sathe S; Park SS; Kamstrup AB; Rasmussen AM; Shankar A; Chua ZM; Fristrup N; Nielsen MM; Vang S; Dyrskjøt L; Aigner S; Damgaard CK; Yeo GW; Pedersen JS
    Genome Med; 2020 Dec; 12(1):112. PubMed ID: 33287884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pervasive Chromatin-RNA Binding Protein Interactions Enable RNA-Based Regulation of Transcription.
    Xiao R; Chen JY; Liang Z; Luo D; Chen G; Lu ZJ; Chen Y; Zhou B; Li H; Du X; Yang Y; San M; Wei X; Liu W; Lécuyer E; Graveley BR; Yeo GW; Burge CB; Zhang MQ; Zhou Y; Fu XD
    Cell; 2019 Jun; 178(1):107-121.e18. PubMed ID: 31251911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly accessible AU-rich regions in 3' untranslated regions are hotspots for binding of regulatory factors.
    Plass M; Rasmussen SH; Krogh A
    PLoS Comput Biol; 2017 Apr; 13(4):e1005460. PubMed ID: 28410363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.