BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

816 related articles for article (PubMed ID: 31888461)

  • 21. Improving CLIP-seq data analysis by incorporating transcript information.
    Uhl M; Tran VD; Backofen R
    BMC Genomics; 2020 Dec; 21(1):894. PubMed ID: 33334306
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hyper conserved elements in vertebrate mRNA 3'-UTRs reveal a translational network of RNA-binding proteins controlled by HuR.
    Dassi E; Zuccotti P; Leo S; Provenzani A; Assfalg M; D'Onofrio M; Riva P; Quattrone A
    Nucleic Acids Res; 2013 Mar; 41(5):3201-16. PubMed ID: 23376935
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of the RBP binding sites on lncRNAs using the high-order nucleotide encoding convolutional neural network.
    Zhang SW; Wang Y; Zhang XX; Wang JQ
    Anal Biochem; 2019 Oct; 583():113364. PubMed ID: 31323206
    [TBL] [Abstract][Full Text] [Related]  

  • 24. PRAS: Predicting functional targets of RNA binding proteins based on CLIP-seq peaks.
    Lin J; Zhang Y; Frankel WN; Ouyang Z
    PLoS Comput Biol; 2019 Aug; 15(8):e1007227. PubMed ID: 31425505
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long Non-Coding RNA Expression Levels Modulate Cell-Type-Specific Splicing Patterns by Altering Their Interaction Landscape with RNA-Binding Proteins.
    Porto FW; Daulatabad SV; Janga SC
    Genes (Basel); 2019 Aug; 10(8):. PubMed ID: 31390792
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The evolution of evolvability in microRNA target sites in vertebrates.
    Xu J; Zhang R; Shen Y; Liu G; Lu X; Wu CI
    Genome Res; 2013 Nov; 23(11):1810-6. PubMed ID: 24077390
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A deep boosting based approach for capturing the sequence binding preferences of RNA-binding proteins from high-throughput CLIP-seq data.
    Li S; Dong F; Wu Y; Zhang S; Zhang C; Liu X; Jiang T; Zeng J
    Nucleic Acids Res; 2017 Aug; 45(14):e129. PubMed ID: 28575488
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mapping the Transcriptome-Wide Landscape of RBP Binding Sites Using gPAR-CLIP-seq: Bioinformatic Analysis.
    Freeberg MA; Kim JK
    Methods Mol Biol; 2016; 1361():91-104. PubMed ID: 26483018
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MERIT: Systematic Analysis and Characterization of Mutational Effect on RNA Interactome Topology.
    Li Y; McGrail DJ; Xu J; Li J; Liu NN; Sun M; Lin R; Pancsa R; Zhang J; Lee JS; Wang H; Mills GB; Li X; Yi S; Sahni N
    Hepatology; 2019 Aug; 70(2):532-546. PubMed ID: 30153342
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational Identification of Post Translational Modification Regulated RNA Binding Protein Motifs.
    Brown AS; Mohanty BK; Howe PH
    PLoS One; 2015; 10(9):e0137696. PubMed ID: 26368004
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A combined sequence and structure based method for discovering enriched motifs in RNA from in vivo binding data.
    Polishchuk M; Paz I; Kohen R; Mesika R; Yakhini Z; Mandel-Gutfreund Y
    Methods; 2017 Apr; 118-119():73-81. PubMed ID: 28274760
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Global Approaches in Studying RNA-Binding Protein Interaction Networks.
    Sternburg EL; Karginov FV
    Trends Biochem Sci; 2020 Jul; 45(7):593-603. PubMed ID: 32531229
    [TBL] [Abstract][Full Text] [Related]  

  • 33. POSTAR3: an updated platform for exploring post-transcriptional regulation coordinated by RNA-binding proteins.
    Zhao W; Zhang S; Zhu Y; Xi X; Bao P; Ma Z; Kapral TH; Chen S; Zagrovic B; Yang YT; Lu ZJ
    Nucleic Acids Res; 2022 Jan; 50(D1):D287-D294. PubMed ID: 34403477
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PIE-seq: identifying RNA-binding protein targets by dual RNA-deaminase editing and sequencing.
    Ruan X; Hu K; Zhang X
    Nat Commun; 2023 Jun; 14(1):3275. PubMed ID: 37280234
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of high-confidence RNA regulatory elements by combinatorial classification of RNA-protein binding sites.
    Li YE; Xiao M; Shi B; Yang YT; Wang D; Wang F; Marcia M; Lu ZJ
    Genome Biol; 2017 Sep; 18(1):169. PubMed ID: 28886744
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissecting the expression landscape of RNA-binding proteins in human cancers.
    Kechavarzi B; Janga SC
    Genome Biol; 2014 Jan; 15(1):R14. PubMed ID: 24410894
    [TBL] [Abstract][Full Text] [Related]  

  • 37. GCLiPP: global crosslinking and protein purification method for constructing high-resolution occupancy maps for RNA binding proteins.
    Zhu WS; Litterman AJ; Sekhon HS; Kageyama R; Arce MM; Taylor KE; Zhao W; Criswell LA; Zaitlen N; Erle DJ; Ansel KM
    Genome Biol; 2023 Dec; 24(1):281. PubMed ID: 38062486
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A deep learning framework for modeling structural features of RNA-binding protein targets.
    Zhang S; Zhou J; Hu H; Gong H; Chen L; Cheng C; Zeng J
    Nucleic Acids Res; 2016 Feb; 44(4):e32. PubMed ID: 26467480
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of RNA-RBP Interactions in Subcellular Compartments by CLIP-Seq.
    Sahadevan S; PĂ©rez-Berlanga M; Polymenidou M
    Methods Mol Biol; 2022; 2428():305-323. PubMed ID: 35171488
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Crosstalk between RNA-Binding Proteins and Immune Microenvironment Revealed Two RBP Regulatory Patterns with Distinct Immunophenotypes in Periodontitis.
    Xing L; Meng G; Chen T; Zhang X; Bai D; Xu H
    J Immunol Res; 2021; 2021():5588429. PubMed ID: 34285922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 41.