These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 31888623)
1. MECoRank: cancer driver genes discovery simultaneously evaluating the impact of SNVs and differential expression on transcriptional networks. Hui Y; Wei PJ; Xia J; Wang YT; Zheng CH BMC Med Genomics; 2019 Dec; 12(Suppl 7):140. PubMed ID: 31888623 [TBL] [Abstract][Full Text] [Related]
2. The Integrative Method Based on the Module-Network for Identifying Driver Genes in Cancer Subtypes. Lu X; Li X; Liu P; Qian X; Miao Q; Peng S Molecules; 2018 Jan; 23(2):. PubMed ID: 29364829 [TBL] [Abstract][Full Text] [Related]
3. Identifying driver genes involving gene dysregulated expression, tissue-specific expression and gene-gene network. Song J; Peng W; Wang F; Wang J BMC Med Genomics; 2019 Dec; 12(Suppl 7):168. PubMed ID: 31888619 [TBL] [Abstract][Full Text] [Related]
4. LNDriver: identifying driver genes by integrating mutation and expression data based on gene-gene interaction network. Wei PJ; Zhang D; Xia J; Zheng CH BMC Bioinformatics; 2016 Dec; 17(Suppl 17):467. PubMed ID: 28155630 [TBL] [Abstract][Full Text] [Related]
5. A random walk-based method to identify driver genes by integrating the subcellular localization and variation frequency into bipartite graph. Song J; Peng W; Wang F BMC Bioinformatics; 2019 May; 20(1):238. PubMed ID: 31088372 [TBL] [Abstract][Full Text] [Related]
6. Discovering potential cancer driver genes by an integrated network-based approach. Shi K; Gao L; Wang B Mol Biosyst; 2016 Aug; 12(9):2921-31. PubMed ID: 27426053 [TBL] [Abstract][Full Text] [Related]
7. DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in cancer. Bashashati A; Haffari G; Ding J; Ha G; Lui K; Rosner J; Huntsman DG; Caldas C; Aparicio SA; Shah SP Genome Biol; 2012 Dec; 13(12):R124. PubMed ID: 23383675 [TBL] [Abstract][Full Text] [Related]
8. DEOD: uncovering dominant effects of cancer-driver genes based on a partial covariance selection method. Amgalan B; Lee H Bioinformatics; 2015 Aug; 31(15):2452-60. PubMed ID: 25819079 [TBL] [Abstract][Full Text] [Related]
9. DGMP: Identifying Cancer Driver Genes by Jointing DGCN and MLP from Multi-omics Genomic Data. Zhang SW; Xu JY; Zhang T Genomics Proteomics Bioinformatics; 2022 Oct; 20(5):928-938. PubMed ID: 36464123 [TBL] [Abstract][Full Text] [Related]
10. Cancer driver gene discovery in transcriptional regulatory networks using influence maximization approach. Rahimi M; Teimourpour B; Marashi SA Comput Biol Med; 2019 Nov; 114():103362. PubMed ID: 31561101 [TBL] [Abstract][Full Text] [Related]
11. A Novel Method for Identifying the Potential Cancer Driver Genes Based on Molecular Data Integration. Zhang W; Wang SL Biochem Genet; 2020 Feb; 58(1):16-39. PubMed ID: 31115714 [TBL] [Abstract][Full Text] [Related]
12. A novel heterophilic graph diffusion convolutional network for identifying cancer driver genes. Zhang T; Zhang SW; Xie MY; Li Y Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37055234 [TBL] [Abstract][Full Text] [Related]
13. A novel network control model for identifying personalized driver genes in cancer. Guo WF; Zhang SW; Zeng T; Li Y; Gao J; Chen L PLoS Comput Biol; 2019 Nov; 15(11):e1007520. PubMed ID: 31765387 [TBL] [Abstract][Full Text] [Related]
14. Ranking cancer drivers via betweenness-based outlier detection and random walks. Erten C; Houdjedj A; Kazan H BMC Bioinformatics; 2021 Feb; 22(1):62. PubMed ID: 33568049 [TBL] [Abstract][Full Text] [Related]
15. CBNA: A control theory based method for identifying coding and non-coding cancer drivers. Pham VVH; Liu L; Bracken CP; Goodall GJ; Long Q; Li J; Le TD PLoS Comput Biol; 2019 Dec; 15(12):e1007538. PubMed ID: 31790386 [TBL] [Abstract][Full Text] [Related]
16. Two-stage-vote ensemble framework based on integration of mutation data and gene interaction network for uncovering driver genes. Kan Y; Jiang L; Guo Y; Tang J; Guo F Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34791034 [TBL] [Abstract][Full Text] [Related]
17. Improving existing analysis pipeline to identify and analyze cancer driver genes using multi-omics data. Nguyen QH; Le DH Sci Rep; 2020 Nov; 10(1):20521. PubMed ID: 33239644 [TBL] [Abstract][Full Text] [Related]
18. IMI-driver: Integrating multi-level gene networks and multi-omics for cancer driver gene identification. Shi P; Han J; Zhang Y; Li G; Zhou X PLoS Comput Biol; 2024 Aug; 20(8):e1012389. PubMed ID: 39186807 [TBL] [Abstract][Full Text] [Related]
19. KatzDriver: A network based method to cancer causal genes discovery in gene regulatory network. Akhavan-Safar M; Teimourpour B Biosystems; 2021 Mar; 201():104326. PubMed ID: 33309969 [TBL] [Abstract][Full Text] [Related]
20. Comprehensive evaluation of computational methods for predicting cancer driver genes. Shi X; Teng H; Shi L; Bi W; Wei W; Mao F; Sun Z Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35037014 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]