These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31888822)

  • 21. Softening and Shape Morphing of Stiff Tough Hydrogels by Localized Unlocking of the Trivalent Ionically Cross-Linked Centers.
    Wang J; Li T; Chen F; Zhou D; Li B; Zhou X; Gan T; Handschuh-Wang S; Zhou X
    Macromol Rapid Commun; 2018 Jun; 39(12):e1800143. PubMed ID: 29749078
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unconventional Tough Double-Network Hydrogels with Rapid Mechanical Recovery, Self-Healing, and Self-Gluing Properties.
    Jia H; Huang Z; Fei Z; Dyson PJ; Zheng Z; Wang X
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31339-31347. PubMed ID: 27782401
    [TBL] [Abstract][Full Text] [Related]  

  • 23. 3D Printing of Antimicrobial Alginate/Bacterial-Cellulose Composite Hydrogels by Incorporating Copper Nanostructures.
    Gutierrez E; Burdiles PA; Quero F; Palma P; Olate-Moya F; Palza H
    ACS Biomater Sci Eng; 2019 Nov; 5(11):6290-6299. PubMed ID: 33405536
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gum Arabic-based three-dimensional printed hydrogel for customizable sensors.
    Wang T; Yu Z; Si J; Liu L; Ren X; Gao G
    Int J Biol Macromol; 2024 Jan; 254(Pt 3):128072. PubMed ID: 37967603
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel.
    Sultan S; Mathew AP
    Nanoscale; 2018 Mar; 10(9):4421-4431. PubMed ID: 29451572
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of an Ultrastretchable Double-Network Hydrogel for Flexible Strain Sensors.
    Li H; Zheng H; Tan YJ; Tor SB; Zhou K
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12814-12823. PubMed ID: 33427444
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3D Printing of Ultratough Polyion Complex Hydrogels.
    Zhu F; Cheng L; Yin J; Wu ZL; Qian J; Fu J; Zheng Q
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31304-31310. PubMed ID: 27779379
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Matrix-Assisted
    Shin S; Hyun J
    ACS Appl Mater Interfaces; 2022 Nov; 14(46):52516-52523. PubMed ID: 36354752
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Digital Light Processing 4D Printing of Transparent, Strong, Highly Conductive Hydrogels.
    He Y; Yu R; Li X; Zhang M; Zhang Y; Yang X; Zhao X; Huang W
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36286-36294. PubMed ID: 34283559
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D printing of highly stretchable hydrogel with diverse UV curable polymers.
    Ge Q; Chen Z; Cheng J; Zhang B; Zhang YF; Li H; He X; Yuan C; Liu J; Magdassi S; Qu S
    Sci Adv; 2021 Jan; 7(2):. PubMed ID: 33523958
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Extrusion printing of ionic-covalent entanglement hydrogels with high toughness.
    Bakarich SE; Panhuis MIH; Beirne S; Wallace GG; Spinks GM
    J Mater Chem B; 2013 Oct; 1(38):4939-4946. PubMed ID: 32261083
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inkjet-Spray Hybrid Printing for 3D Freeform Fabrication of Multilayered Hydrogel Structures.
    Yoon S; Park JA; Lee HR; Yoon WH; Hwang DS; Jung S
    Adv Healthc Mater; 2018 Jul; 7(14):e1800050. PubMed ID: 29708307
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photoresponsive Shape Memory Hydrogels for Complex Deformation and Solvent-Driven Actuation.
    Li G; Gao T; Fan G; Liu Z; Liu Z; Jiang J; Zhao Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6407-6418. PubMed ID: 31880155
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of photocurable cellulose acetate butyrate resin for continuous liquid interface production of three-dimensional objects with excellent mechanical and chemical-resistant properties.
    Hu R; Huang B; Xue Z; Li Q; Xia T; Zhang W; Lu C; Xu H
    Carbohydr Polym; 2019 Mar; 207():609-618. PubMed ID: 30600046
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Introduction of an Ambient 3D-Printable Hydrogel Ink to Fabricate an Enzyme-Immobilized Platform with Tunable Geometry for Heterogeneous Biocatalysis.
    Pinyakit Y; Romphophak P; Painmanakul P; Hoven VP
    Biomacromolecules; 2023 Jul; 24(7):3138-3148. PubMed ID: 37246526
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A 3D Printable and Mechanically Robust Hydrogel Based on Alginate and Graphene Oxide.
    Liu S; Bastola AK; Li L
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41473-41481. PubMed ID: 29116743
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ion-Cross-Linked Hybrid Photochromic Hydrogels with Enhanced Mechanical Properties and Shape Memory Behaviour.
    Long S; Chen F; Ren H; Hu Y; Chen C; Huang Y; Li X
    Polymers (Basel); 2024 Apr; 16(8):. PubMed ID: 38674950
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stretchable supramolecular hydrogels with triple shape memory effect.
    Le X; Lu W; Zheng J; Tong D; Zhao N; Ma C; Xiao H; Zhang J; Huang Y; Chen T
    Chem Sci; 2016 Nov; 7(11):6715-6720. PubMed ID: 28451115
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Rheological Properties of Ionically Crosslinked Viscoelastic 2D Films vs. Corresponding 3D Bulk Hydrogels.
    De Angelis G; Lutz-Bueno V; Amstad E
    ACS Appl Mater Interfaces; 2023 May; 15(19):23758-23764. PubMed ID: 37142546
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gellan Fluid Gel as a Versatile Support Bath Material for Fluid Extrusion Bioprinting.
    Compaan AM; Song K; Huang Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5714-5726. PubMed ID: 30644714
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.