BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 3188893)

  • 1. Noise-induced vasoconstriction in the cochlea.
    Nakai Y; Masutani H
    Acta Otolaryngol Suppl; 1988; 447():23-7. PubMed ID: 3188893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Morphological changes of the spiral vessel after rock music exposure.
    Okada H; Yamane H; Nakai Y
    Acta Otolaryngol Suppl; 1991; 486():61-5. PubMed ID: 1842879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acoustic Trauma Modulates Cochlear Blood Flow and Vasoactive Factors in a Rodent Model of Noise-Induced Hearing Loss.
    Shin SA; Lyu AR; Jeong SH; Kim TH; Park MJ; Park YH
    Int J Mol Sci; 2019 Oct; 20(21):. PubMed ID: 31731459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of frequency and intensity of sound on cochlear blood flow.
    Okamoto A; Hasegawa M; Tamura T; Homma T; Komatsuzaki A
    Acta Otolaryngol; 1992; 112(1):59-64. PubMed ID: 1575038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of impulse noise on cochlear vessels.
    Vertes D; Axelsson A; Hornstrand C; Nilsson P
    Arch Otolaryngol; 1984 Feb; 110(2):111-5. PubMed ID: 6696680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cochlear vascular changes in response to loud noise.
    Quirk WS; Seidman MD
    Am J Otol; 1995 May; 16(3):322-5. PubMed ID: 8588626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cochlear vascular histology in animals exposed to noise.
    Vertes D; Axelsson A
    Arch Otorhinolaryngol; 1981; 230(3):285-8. PubMed ID: 7271572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histopathological differences between temporary and permanent threshold shift.
    Nordmann AS; Bohne BA; Harding GW
    Hear Res; 2000 Jan; 139(1-2):13-30. PubMed ID: 10601709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TNF-α inhibition using etanercept prevents noise-induced hearing loss by improvement of cochlear blood flow in vivo.
    Arpornchayanon W; Canis M; Ihler F; Settevendemie C; Strieth S
    Int J Audiol; 2013 Aug; 52(8):545-52. PubMed ID: 23786392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of inner ear vessel diameters with casting method.
    Moriguchi M; Masutani H; Sugita M; Matsunaga K; Okamoto J; Nakai Y
    Acta Otolaryngol Suppl; 1991; 486():39-44. PubMed ID: 1842876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noise induced reversible changes of cochlear ribbon synapses contribute to temporary hearing loss in mice.
    Shi L; Liu K; Wang H; Zhang Y; Hong Z; Wang M; Wang X; Jiang X; Yang S
    Acta Otolaryngol; 2015; 135(11):1093-102. PubMed ID: 26139555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hearing shift and inner ear pathology of guinea pigs exposed to octave bands of noise centered at 63 Hz and 4 kHz.
    Wang L; Jiang W; Qian J
    Chin Med J (Engl); 1994 Jul; 107(7):500-4. PubMed ID: 7956496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Threshold shift and inner ear pathology in guinea pigs exposed to octave bands of noise at 63 Hz and 4 kHz].
    Wang L
    Zhonghua Er Bi Yan Hou Ke Za Zhi; 1990 Oct; 25(5):277-80, 318. PubMed ID: 2076336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of inner ear vessels. A scanning electron microscopic study.
    Moriguchi M; Masutani H; Sugita M; Matsunaga K; Okamoto J; Nakai Y
    Acta Otolaryngol Suppl; 1991; 486():32-8. PubMed ID: 1842875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sarthran preserves cochlear microcirculation and reduces temporary threshold shifts after noise exposure.
    Goldwin B; Khan MJ; Shivapuja B; Seidman MD; Quirk WS
    Otolaryngol Head Neck Surg; 1998 May; 118(5):576-83. PubMed ID: 9591853
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The endocochlear potential as an indicator of reticular lamina integrity after noise exposure in mice.
    Ohlemiller KK; Kaur T; Warchol ME; Withnell RH
    Hear Res; 2018 Apr; 361():138-151. PubMed ID: 29426600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of noise exposure on endolymphatic hydrops. An experimental study.
    Nakai Y; Masutani H; Moriguchi M; Matsunaga K; Sugita M
    Acta Otolaryngol Suppl; 1991; 486():7-12. PubMed ID: 1842881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphological correlates of hearing loss after cochlear implantation and electro-acoustic stimulation in a hearing-impaired Guinea pig model.
    Reiss LA; Stark G; Nguyen-Huynh AT; Spear KA; Zhang H; Tanaka C; Li H
    Hear Res; 2015 Sep; 327():163-74. PubMed ID: 26087114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the measurements of cochlear microcirculation and hearing function after loud noise.
    Arpornchayanon W; Canis M; Suckfuell M; Ihler F; Olzowy B; Strieth S
    Otolaryngol Head Neck Surg; 2011 Sep; 145(3):463-9. PubMed ID: 21636842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of carbogen on cochlear blood flow and hearing function following acute acoustic trauma in guinea pigs.
    Zhao J; Sun J; Liu Y
    Arch Med Res; 2012 Oct; 43(7):530-5. PubMed ID: 23085262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.