These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Blood-based protein profiling identifies serum protein c-KIT as a novel biomarker for hypertrophic cardiomyopathy. Sonnenschein K; Fiedler J; de Gonzalo-Calvo D; Xiao K; Pfanne A; Just A; Zwadlo C; Soltani S; Bavendiek U; Kraft T; Dos Remedios C; Cebotari S; Bauersachs J; Thum T Sci Rep; 2021 Jan; 11(1):1755. PubMed ID: 33469076 [TBL] [Abstract][Full Text] [Related]
3. Mitochondrial long noncoding RNAs as blood based biomarkers for cardiac remodeling in patients with hypertrophic cardiomyopathy. Kitow J; Derda AA; Beermann J; Kumarswarmy R; Pfanne A; Fendrich J; Lorenzen JM; Xiao K; Bavendiek U; Bauersachs J; Thum T Am J Physiol Heart Circ Physiol; 2016 Sep; 311(3):H707-12. PubMed ID: 27422984 [TBL] [Abstract][Full Text] [Related]
4. Identifying Obstructive Hypertrophic Cardiomyopathy from Nonobstructive Hypertrophic Cardiomyopathy: Development and Validation of a Model Based on Electrocardiogram Features. Guo L; Ma Z; Yang W; Zhang F; Shao H; Liu L; Gao C; Tao L Glob Heart; 2023; 18(1):40. PubMed ID: 37547171 [TBL] [Abstract][Full Text] [Related]
5. Blood-based microRNA signatures differentiate various forms of cardiac hypertrophy. Derda AA; Thum S; Lorenzen JM; Bavendiek U; Heineke J; Keyser B; Stuhrmann M; Givens RC; Kennel PJ; Schulze PC; Widder JD; Bauersachs J; Thum T Int J Cardiol; 2015 Oct; 196():115-22. PubMed ID: 26086795 [TBL] [Abstract][Full Text] [Related]
6. Novel biomarkers identifying hypertrophic cardiomyopathy and its obstructive variant based on targeted amino acid metabolomics. Guo L; Wang B; Zhang F; Gao C; Hu G; Zhou M; Wang R; Zhao H; Yan W; Zhang L; Ma Z; Yang W; Guo X; Huang C; Cui Z; Sun F; Song D; Liu L; Tao L Chin Med J (Engl); 2022 Aug; 135(16):1952-1961. PubMed ID: 36156511 [TBL] [Abstract][Full Text] [Related]
7. Circulating plasma circular RNAs as novel diagnostic biomarkers for congenital heart disease in children. Wu J; Li J; Liu H; Yin J; Zhang M; Yu Z; Miao H J Clin Lab Anal; 2019 Nov; 33(9):e22998. PubMed ID: 31429492 [TBL] [Abstract][Full Text] [Related]
8. Ventricular expression of brain natriuretic peptide in hypertrophic cardiomyopathy. Hasegawa K; Fujiwara H; Doyama K; Miyamae M; Fujiwara T; Suga S; Mukoyama M; Nakao K; Imura H; Sasayama S Circulation; 1993 Aug; 88(2):372-80. PubMed ID: 8339400 [TBL] [Abstract][Full Text] [Related]
9. Cardiac magnetic field map topology quantified by Kullback-Leibler entropy identifies patients with hypertrophic cardiomyopathy. Schirdewan A; Gapelyuk A; Fischer R; Koch L; Schütt H; Zacharzowsky U; Dietz R; Thierfelder L; Wessel N Chaos; 2007 Mar; 17(1):015118. PubMed ID: 17411275 [TBL] [Abstract][Full Text] [Related]
10. Cardiac endurance training alters plasma profiles of circular RNA MBOAT2. Meinecke A; Mitzka S; Just A; Cushman S; Stojanović SD; Xiao K; Mooren FC; Fiedler J; Thum T Am J Physiol Heart Circ Physiol; 2020 Jul; 319(1):H13-H21. PubMed ID: 32412780 [TBL] [Abstract][Full Text] [Related]
11. The usefulness of sST2 and galectin-3 as novel biomarkers for better risk stratification in hypertrophic cardiomyopathy. Gawor M; Śpiewak M; Janas J; Kożuch K; Wróbel A; Mazurkiewicz Ł; Baranowski R; Marczak M; Grzybowski J Kardiol Pol; 2017; 75(10):997-1004. PubMed ID: 28612913 [TBL] [Abstract][Full Text] [Related]
12. Morphological characteristics of hypertrophic cardiomyopathy estimated by left ventriculography. Ohtani T; Hamada M; Hiwada K Jpn Circ J; 1993 May; 57(5):418-25. PubMed ID: 8510312 [TBL] [Abstract][Full Text] [Related]
13. Circulating circRNA as biomarkers for dilated cardiomyopathy etiology. Costa MC; Calderon-Dominguez M; Mangas A; Campuzano O; Sarquella-Brugada G; Ramos M; Quezada-Feijoo M; Pinilla JMG; Robles-Mezcua A; Del Aguila Pacheco-Cruz G; Belmonte T; Enguita FJ; Toro R J Mol Med (Berl); 2021 Dec; 99(12):1711-1725. PubMed ID: 34498126 [TBL] [Abstract][Full Text] [Related]
14. Hypertrophic obstructive and non-obstructive cardiomyopathy in Japan. Diagnosis of the disease with special reference to endomyocardial catheter biopsy. Kawai C; Sakurai T; Fujiwara H; Matsumori A; Yui Y Eur Heart J; 1983 Nov; 4 Suppl F():121-5. PubMed ID: 6686527 [TBL] [Abstract][Full Text] [Related]
15. MicroRNAs as Biomarkers in Hypertrophic Cardiomyopathy: Current State of the Art. Angelopoulos A; Oikonomou E; Vogiatzi G; Antonopoulos A; Tsalamandris S; Georgakopoulos C; Papanikolaou P; Lazaros G; Charalambous G; Siasos G; Vlachopoulos C; Tousoulis D Curr Med Chem; 2021; 28(36):7400-7412. PubMed ID: 33820510 [TBL] [Abstract][Full Text] [Related]
16. Ultrasonic Assessment of Myocardial Microstructure in Hypertrophic Cardiomyopathy Sarcomere Mutation Carriers With and Without Left Ventricular Hypertrophy. Hiremath P; Lawler PR; Ho JE; Correia AW; Abbasi SA; Kwong RY; Jerosch-Herold M; Ho CY; Cheng S Circ Heart Fail; 2016 Sep; 9(9):. PubMed ID: 27623770 [TBL] [Abstract][Full Text] [Related]
17. Vector U loop in patients with idiopathic cardiomyopathy. Fujimoto T; Kiyoshige K; Saito Y; Nomura M; Bando S; Nakaya Y; Mori H J Electrocardiol; 1990 Oct; 23(4):331-9. PubMed ID: 2254703 [TBL] [Abstract][Full Text] [Related]
18. Circulating levels of insulin-like growth factor-1 and its binding proteins in patients with hypertrophic cardiomyopathy. Saeki H; Hamada M; Hiwada K Circ J; 2002 Jul; 66(7):639-44. PubMed ID: 12135130 [TBL] [Abstract][Full Text] [Related]
19. Circulating microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy. Fang L; Ellims AH; Moore XL; White DA; Taylor AJ; Chin-Dusting J; Dart AM J Transl Med; 2015 Sep; 13():314. PubMed ID: 26404540 [TBL] [Abstract][Full Text] [Related]
20. A Novel miRNA Screen Identifies miRNA-4454 as a Candidate Biomarker for Ventricular Fibrosis in Patients with Hypertrophic Cardiomyopathy. Thottakara T; Lund N; Krämer E; Kirchhof P; Carrier L; Patten M Biomolecules; 2021 Nov; 11(11):. PubMed ID: 34827715 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]