BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31889249)

  • 1. Quantitative Analysis of RNA Chaperone Activity by Native Gel Electrophoresis and Fluorescence Spectroscopy.
    Panja S; Małecka EM; Santiago-Frangos A; Woodson SA
    Methods Mol Biol; 2020; 2106():19-39. PubMed ID: 31889249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence reporters for Hfq oligomerization and RNA annealing.
    Panja S; Woodson SA
    Methods Mol Biol; 2015; 1259():369-83. PubMed ID: 25579597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acidic Residues in the Hfq Chaperone Increase the Selectivity of sRNA Binding and Annealing.
    Panja S; Santiago-Frangos A; Schu DJ; Gottesman S; Woodson SA
    J Mol Biol; 2015 Nov; 427(22):3491-3500. PubMed ID: 26196441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biochemical Methods for the Study of the FinO Family of Bacterial RNA Chaperones.
    Kim HJ; Chaulk S; Arthur D; Edwards RA; Glover JNM
    Methods Mol Biol; 2020; 2106():1-18. PubMed ID: 31889248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Escherichia coli Hfq binds A18 and DsrA domain II with similar 2:1 Hfq6/RNA stoichiometry using different surface sites.
    Sun X; Wartell RM
    Biochemistry; 2006 Apr; 45(15):4875-87. PubMed ID: 16605255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Salt-Dependent Modulation of the RNA Chaperone Activity of RNA-Binding Protein La.
    Sommer G; Sendlmeier C; Heise T
    Methods Mol Biol; 2020; 2106():121-136. PubMed ID: 31889254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. C-terminal domain of the RNA chaperone Hfq drives sRNA competition and release of target RNA.
    Santiago-Frangos A; Kavita K; Schu DJ; Gottesman S; Woodson SA
    Proc Natl Acad Sci U S A; 2016 Oct; 113(41):E6089-E6096. PubMed ID: 27681631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dissecting RNA chaperone activity.
    Rajkowitsch L; Schroeder R
    RNA; 2007 Dec; 13(12):2053-60. PubMed ID: 17901153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of sRNA-mRNA interactions by electrophoretic mobility shift assay.
    Morita T; Maki K; Aiba H
    Methods Mol Biol; 2012; 905():235-44. PubMed ID: 22736008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and biochemical studies on ATP binding and hydrolysis by the Escherichia coli RNA chaperone Hfq.
    Hämmerle H; Beich-Frandsen M; Večerek B; Rajkowitsch L; Carugo O; Djinović-Carugo K; Bläsi U
    PLoS One; 2012; 7(11):e50892. PubMed ID: 23226421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling RNA annealing and strand displacement: a FRET-based microplate reader assay for RNA chaperone activity.
    Rajkowitsch L; Schroeder R
    Biotechniques; 2007 Sep; 43(3):304, 306, 308 passim. PubMed ID: 17907573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural characterization of the RNA chaperone Hfq from the nitrogen-fixing bacterium Herbaspirillum seropedicae SmR1.
    Kadowaki MA; Iulek J; Barbosa JA; Pedrosa Fde O; de Souza EM; Chubatsu LS; Monteiro RA; de Oliveira MA; Steffens MB
    Biochim Biophys Acta; 2012 Feb; 1824(2):359-65. PubMed ID: 22154803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The bacterial endoribonuclease RNase E can cleave RNA in the absence of the RNA chaperone Hfq.
    Baek YM; Jang KJ; Lee H; Yoon S; Baek A; Lee K; Kim DE
    J Biol Chem; 2019 Nov; 294(44):16465-16478. PubMed ID: 31540970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A sensitive RNA chaperone assay using induced RNA annealing by duplex specific nuclease for amplification.
    Zhang K; Wang K; Zhu X; Xie M
    Anal Chim Acta; 2018 Nov; 1033():199-204. PubMed ID: 30172327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The stoichiometry of the Escherichia coli Hfq protein bound to RNA.
    Updegrove TB; Correia JJ; Chen Y; Terry C; Wartell RM
    RNA; 2011 Mar; 17(3):489-500. PubMed ID: 21205841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label-Free Electrophoretic Mobility Shift Assay (EMSA) for Measuring Dissociation Constants of Protein-RNA Complexes.
    Seo M; Lei L; Egli M
    Curr Protoc Nucleic Acid Chem; 2019 Mar; 76(1):e70. PubMed ID: 30461222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of salt and RNA structure on annealing and strand displacement by Hfq.
    Hopkins JF; Panja S; McNeil SA; Woodson SA
    Nucleic Acids Res; 2009 Oct; 37(18):6205-13. PubMed ID: 19671524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid binding and release of Hfq from ternary complexes during RNA annealing.
    Hopkins JF; Panja S; Woodson SA
    Nucleic Acids Res; 2011 Jul; 39(12):5193-202. PubMed ID: 21378124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Horizontal Agarose Gel Mobility Shift Assay for Protein-RNA Complexes.
    Ream JA; Lewis LK; Lewis KA
    Methods Mol Biol; 2019; 1855():363-370. PubMed ID: 30426432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hexamer to monomer equilibrium of E. coli Hfq in solution and its impact on RNA annealing.
    Panja S; Woodson SA
    J Mol Biol; 2012 Apr; 417(5):406-12. PubMed ID: 22326348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.