These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31889249)

  • 21. Spectroscopic observation of RNA chaperone activities of Hfq in post-transcriptional regulation by a small non-coding RNA.
    Arluison V; Hohng S; Roy R; Pellegrini O; Régnier P; Ha T
    Nucleic Acids Res; 2007; 35(3):999-1006. PubMed ID: 17259214
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On the facultative requirement of the bacterial RNA chaperone, Hfq.
    Jousselin A; Metzinger L; Felden B
    Trends Microbiol; 2009 Sep; 17(9):399-405. PubMed ID: 19733080
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rapid agarose gel electrophoretic mobility shift assay for quantitating protein: RNA interactions.
    Ream JA; Lewis LK; Lewis KA
    Anal Biochem; 2016 Oct; 511():36-41. PubMed ID: 27495142
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identifying and characterizing Hfq-RNA interactions.
    Faner MA; Feig AL
    Methods; 2013 Sep; 63(2):144-59. PubMed ID: 23707622
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Real-Time Fluorescence-Based Approaches to Disentangle Mechanisms of a Protein's RNA Chaperone Activity.
    Schmidt T; Friedrich S; Golbik RP; Behrens SE
    Methods Mol Biol; 2020; 2106():89-106. PubMed ID: 31889252
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrophoretic mobility shift assays for RNA-protein complexes.
    Rio DC
    Cold Spring Harb Protoc; 2014 Apr; 2014(4):435-40. PubMed ID: 24692495
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hfq, a new chaperoning role: binding to messenger RNA determines access for small RNA regulator.
    Geissmann TA; Touati D
    EMBO J; 2004 Jan; 23(2):396-405. PubMed ID: 14739933
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular chaperones maximize the native state yield on biological times by driving substrates out of equilibrium.
    Chakrabarti S; Hyeon C; Ye X; Lorimer GH; Thirumalai D
    Proc Natl Acad Sci U S A; 2017 Dec; 114(51):E10919-E10927. PubMed ID: 29217641
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conserved arginines on the rim of Hfq catalyze base pair formation and exchange.
    Panja S; Schu DJ; Woodson SA
    Nucleic Acids Res; 2013 Aug; 41(15):7536-46. PubMed ID: 23771143
    [TBL] [Abstract][Full Text] [Related]  

  • 30. RNA chaperone activity of translation initiation factor IF1.
    Croitoru V; Semrad K; Prenninger S; Rajkowitsch L; Vejen M; Laursen BS; Sperling-Petersen HU; Isaksson LA
    Biochimie; 2006 Dec; 88(12):1875-82. PubMed ID: 16938378
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of Mg(2+) and Na(+) on the nucleic acid chaperone activity of HIV-1 nucleocapsid protein: implications for reverse transcription.
    Vo MN; Barany G; Rouzina I; Musier-Forsyth K
    J Mol Biol; 2009 Feb; 386(3):773-88. PubMed ID: 19154740
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrophoretic mobility shift assay of RNA-RNA complexes.
    Bak G; Han K; Kim KS; Lee Y
    Methods Mol Biol; 2015; 1240():153-63. PubMed ID: 25352144
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Specific Nucleic Acid Chaperone Activity of HIV-1 Nucleocapsid Protein Deduced from Hairpin Unfolding.
    McCauley MJ; Rouzina I; Williams MC
    Methods Mol Biol; 2020; 2106():59-88. PubMed ID: 31889251
    [TBL] [Abstract][Full Text] [Related]  

  • 34. HIV-1 nucleocapsid protein as a nucleic acid chaperone: spectroscopic study of its helix-destabilizing properties, structural binding specificity, and annealing activity.
    Urbaneja MA; Wu M; Casas-Finet JR; Karpel RL
    J Mol Biol; 2002 May; 318(3):749-64. PubMed ID: 12054820
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative analysis of protein-RNA interactions by gel mobility shift.
    Ryder SP; Recht MI; Williamson JR
    Methods Mol Biol; 2008; 488():99-115. PubMed ID: 18982286
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Amyloid Region of Hfq Riboregulator Promotes DsrA:
    Turbant F; Wu P; Wien F; Arluison V
    Biology (Basel); 2021 Sep; 10(9):. PubMed ID: 34571778
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The rpoS mRNA leader recruits Hfq to facilitate annealing with DsrA sRNA.
    Soper TJ; Woodson SA
    RNA; 2008 Sep; 14(9):1907-17. PubMed ID: 18658123
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New molecular interactions broaden the functions of the RNA chaperone Hfq.
    Dos Santos RF; Arraiano CM; Andrade JM
    Curr Genet; 2019 Dec; 65(6):1313-1319. PubMed ID: 31104083
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonspecific binding to structured RNA and preferential unwinding of an exposed helix by the CYT-19 protein, a DEAD-box RNA chaperone.
    Tijerina P; Bhaskaran H; Russell R
    Proc Natl Acad Sci U S A; 2006 Nov; 103(45):16698-703. PubMed ID: 17075070
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism of the gBP21-mediated RNA/RNA annealing reaction: matchmaking and charge reduction.
    Müller UF; Göringer HU
    Nucleic Acids Res; 2002 Jan; 30(2):447-55. PubMed ID: 11788706
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.