These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 31889260)
1. RNA Structure Analysis by Chemical Probing with DMS and CMCT. Andrade JM; Dos Santos RF; Arraiano CM Methods Mol Biol; 2020; 2106():209-223. PubMed ID: 31889260 [TBL] [Abstract][Full Text] [Related]
2. RNA Remodeling by RNA Chaperones Monitored by RNA Structure Probing. Friedrich S; Schmidt T; Behrens SE Methods Mol Biol; 2020; 2106():179-192. PubMed ID: 31889258 [TBL] [Abstract][Full Text] [Related]
3. RNA Secondary Structure Study by Chemical Probing Methods Using DMS and CMCT. Alghoul F; Eriani G; Martin F Methods Mol Biol; 2021; 2300():241-250. PubMed ID: 33792883 [TBL] [Abstract][Full Text] [Related]
4. The interplay between molecular flexibility and RNA chemical probing reactivities analyzed at the nucleotide level via an extensive molecular dynamics study. Frezza E; Courban A; Allouche D; Sargueil B; Pasquali S Methods; 2019 Jun; 162-163():108-127. PubMed ID: 31145972 [TBL] [Abstract][Full Text] [Related]
5. Carbodiimide reagents for the chemical probing of RNA structure in cells. Wang PY; Sexton AN; Culligan WJ; Simon MD RNA; 2019 Jan; 25(1):135-146. PubMed ID: 30389828 [TBL] [Abstract][Full Text] [Related]
6. Probing RNA structure with chemical reagents and enzymes. Ziehler WA; Engelke DR Curr Protoc Nucleic Acid Chem; 2001 May; Chapter 6():Unit 6.1. PubMed ID: 18428862 [TBL] [Abstract][Full Text] [Related]
7. Mapping RNA structure in vitro using nucleobase-specific probes. Sachsenmaier N; Handl S; Debeljak F; Waldsich C Methods Mol Biol; 2014; 1086():79-94. PubMed ID: 24136599 [TBL] [Abstract][Full Text] [Related]
8. Chemical secondary structure probing of two highly methylated regions in Xenopus laevis 28S ribosomal RNA. Ajuh PM; Maden EB Biochim Biophys Acta; 1994 Sep; 1219(1):89-97. PubMed ID: 8086482 [TBL] [Abstract][Full Text] [Related]
9. Escherichia coli initiation factor 3 protein binding to 30S ribosomal subunits alters the accessibility of nucleotides within the conserved central region of 16S rRNA. Muralikrishna P; Wickstrom E Biochemistry; 1989 Sep; 28(19):7505-10. PubMed ID: 2514787 [TBL] [Abstract][Full Text] [Related]
11. Rapid chemical probing of conformation in 16 S ribosomal RNA and 30 S ribosomal subunits using primer extension. Moazed D; Stern S; Noller HF J Mol Biol; 1986 Feb; 187(3):399-416. PubMed ID: 2422386 [TBL] [Abstract][Full Text] [Related]
12. Structure analysis of the 5' external transcribed spacer of the precursor ribosomal RNA from Saccharomyces cerevisiae. Yeh LC; Lee JC J Mol Biol; 1992 Dec; 228(3):827-39. PubMed ID: 1469716 [TBL] [Abstract][Full Text] [Related]
13. Proposed secondary structure of eukaryote specific expansion segment 15 in 28S rRNA from mice, rats, and rabbits. Larsson SL; Nygård O Biochemistry; 2001 Mar; 40(10):3222-31. PubMed ID: 11258939 [TBL] [Abstract][Full Text] [Related]
14. Probing the structure of mouse Ehrlich ascites cell 5.8S, 18S and 28S ribosomal RNA in situ. Holmberg L; Melander Y; Nygård O Nucleic Acids Res; 1994 Apr; 22(8):1374-82. PubMed ID: 8190627 [TBL] [Abstract][Full Text] [Related]
15. DMS footprinting of structured RNAs and RNA-protein complexes. Tijerina P; Mohr S; Russell R Nat Protoc; 2007; 2(10):2608-23. PubMed ID: 17948004 [TBL] [Abstract][Full Text] [Related]
16. Conformation of yeast 18S rRNA. Direct chemical probing of the 5' domain in ribosomal subunits and in deproteinized RNA by reverse transcriptase mapping of dimethyl sulfate-accessible. Lempereur L; Nicoloso M; Riehl N; Ehresmann C; Ehresmann B; Bachellerie JP Nucleic Acids Res; 1985 Dec; 13(23):8339-57. PubMed ID: 2417197 [TBL] [Abstract][Full Text] [Related]
17. Mutation signature filtering enables high-fidelity RNA structure probing at all four nucleobases with DMS. Mitchell D; Cotter J; Saleem I; Mustoe AM Nucleic Acids Res; 2023 Sep; 51(16):8744-8757. PubMed ID: 37334863 [TBL] [Abstract][Full Text] [Related]
18. Assembly factors chaperone ribosomal RNA folding by isolating helical junctions that are prone to misfolding. Huang H; Karbstein K Proc Natl Acad Sci U S A; 2021 Jun; 118(25):. PubMed ID: 34135123 [TBL] [Abstract][Full Text] [Related]
19. A new reagent for in vivo structure probing of RNA G and U residues that improves RNA structure prediction alone and combined with DMS. Douds CA; Babitzke P; Bevilacqua PC RNA; 2024 Jun; 30(7):901-919. PubMed ID: 38670632 [TBL] [Abstract][Full Text] [Related]
20. Top-down characterization of nucleic acids modified by structural probes using high-resolution tandem mass spectrometry and automated data interpretation. Kellersberger KA; Yu E; Kruppa GH; Young MM; Fabris D Anal Chem; 2004 May; 76(9):2438-45. PubMed ID: 15117181 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]