These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31889269)

  • 1. Cadmium immobilization in aqueous solution by Aspergillus niger and geological fluorapatite.
    Okolie CU; Chen H; Zhao Y; Tian D; Zhang L; Su M; Jiang Z; Li Z; Li H
    Environ Sci Pollut Res Int; 2020 Mar; 27(7):7647-7656. PubMed ID: 31889269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lead immobilization by geological fluorapatite and fungus Aspergillus niger.
    Li Z; Wang F; Bai T; Tao J; Guo J; Yang M; Wang S; Hu S
    J Hazard Mater; 2016 Dec; 320():386-392. PubMed ID: 27585270
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remediation of lead-contaminated water by geological fluorapatite and fungus Penicillium oxalicum.
    Tian D; Wang W; Su M; Zheng J; Wu Y; Wang S; Li Z; Hu S
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):21118-21126. PubMed ID: 29770937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental and modeling studies of competitive Pb (II) and Cd (II) bioaccumulation by Aspergillus niger.
    Qiu J; Song X; Li S; Zhu B; Chen Y; Zhang L; Li Z
    Appl Microbiol Biotechnol; 2021 Aug; 105(16-17):6477-6488. PubMed ID: 34424384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new insight into lead (II) tolerance of environmental fungi based on a study of Aspergillus niger and Penicillium oxalicum.
    Tian D; Jiang Z; Jiang L; Su M; Feng Z; Zhang L; Wang S; Li Z; Hu S
    Environ Microbiol; 2019 Jan; 21(1):471-479. PubMed ID: 30421848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dissolution of fluorapatite by phosphate-solubilizing fungi: a balance between enhanced phosphorous supply and fluorine toxicity.
    Shao X; Hao W; Konhauser KO; Gao Y; Tang L; Su M; Li Z
    Environ Sci Pollut Res Int; 2021 Dec; 28(48):69393-69400. PubMed ID: 34302245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosorption of copper(II) and cadmium(II) from aqueous solutions by free and immobilized biomass of Aspergillus niger.
    Tsekova K; Todorova D; Dencheva V; Ganeva S
    Bioresour Technol; 2010 Mar; 101(6):1727-31. PubMed ID: 19906526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Utilization of Pleurotus eryngii biosorbent as an environmental bioremedy for the decontamination of trace cadmium(II) ions from water system.
    Amin F; Talpur FN; Balouch A; Samoon MK; Afridi HI; Surhio MA
    Water Sci Technol; 2018 Oct; 78(5-6):1148-1158. PubMed ID: 30339539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosorption of cadmium by fungal biomass of Aspergillus niger.
    Yang Q; Wang JL; Xing Z
    Biomed Environ Sci; 2005 Jun; 18(3):141-5. PubMed ID: 16131014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydroxy- and fluorapatite as sorbents in Cd(II)-Zn(II) multi-component solutions in the absence/presence of EDTA.
    Viipsi K; Sjöberg S; Tõnsuaadu K; Shchukarev A
    J Hazard Mater; 2013 May; 252-253():91-8. PubMed ID: 23500794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of aluminium from aqueous solution by four wild-type strains of Aspergillus niger.
    Boriová K; Čerňanský S; Matúš P; Bujdoš M; Šimonovičová A; Urík M
    Bioprocess Biosyst Eng; 2019 Feb; 42(2):291-296. PubMed ID: 30406393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosorption of Ni, Cr and Cd by metal tolerant Aspergillus niger and Penicillium sp. using single and multi-metal solution.
    Ahmad I; Ansari MI; Aqil F
    Indian J Exp Biol; 2006 Jan; 44(1):73-6. PubMed ID: 16430095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cadmium-induced oxidative stress tolerance in cadmium resistant Aspergillus foetidus: its possible role in cadmium bioremediation.
    Chakraborty S; Mukherjee A; Khuda-Bukhsh AR; Das TK
    Ecotoxicol Environ Saf; 2014 Aug; 106():46-53. PubMed ID: 24836877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioleaching of Cd from contaminated Helianthus annuus L. stalk and the safe utilization of its byproducts by Aspergillus niger.
    Zhang Q; Zou D; Zeng X; Yang Y; Zeng C; Li M; Fu Z; Zeng Q
    Environ Res; 2024 Jun; 251(Pt 2):118714. PubMed ID: 38518916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nickel accumulation and nickel oxalate precipitation by Aspergillus niger.
    Magyarosy A; Laidlaw RD; Kilaas R; Echer C; Clark DS; Keasling JD
    Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):382-8. PubMed ID: 12111174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosorption potency of Aspergillus niger for removal of chromium (VI).
    Srivastava S; Thakur IS
    Curr Microbiol; 2006 Sep; 53(3):232-7. PubMed ID: 16874547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of biopellets composed of microalgae and fungi on cadmium present at environmentally relevant levels in water.
    Bodin H; Asp H; Hultberg M
    Int J Phytoremediation; 2017 May; 19(5):500-504. PubMed ID: 27739868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A contrast of Pb(II), Cd(II), and Cu(II) toxicities to Aspergillus niger through biochemical, morphological, and genetic investigations.
    Zhang L; Yang X; Li S; Tang L; Chen T; Gu T; Chen G; Gadd GM; Li Z
    J Hazard Mater; 2023 Mar; 446():130691. PubMed ID: 36608576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isotherms, thermodynamic and mechanism studies of removal of low concentration uranium (VI) by Aspergillus niger.
    Wang X; Wang T; Zheng X; Shen Y; Lu X
    Water Sci Technol; 2017 Jun; 75(12):2727-2736. PubMed ID: 28659512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface treated Pteris vittata L. pinnae powder used as an efficient biosorbent of Pb(II), Cd(II), and Cr(VI) from aqueous solution.
    Prabhu SG; Srinikethan G; Hegde S
    Int J Phytoremediation; 2018 Jul; 20(9):947-956. PubMed ID: 29873536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.