These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 31889269)

  • 21. Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillus niger.
    Amini M; Younesi H; Bahramifar N; Lorestani AA; Ghorbani F; Daneshi A; Sharifzadeh M
    J Hazard Mater; 2008 Jun; 154(1-3):694-702. PubMed ID: 18068898
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biosorption of phenol from an aqueous solution by Aspergillus niger biomass.
    Rao JR; Viraraghavan T
    Bioresour Technol; 2002 Nov; 85(2):165-71. PubMed ID: 12227541
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biosorption of C.I. Direct Blue 199 from aqueous solution by nonviable Aspergillus niger.
    Xiong XJ; Meng XJ; Zheng TL
    J Hazard Mater; 2010 Mar; 175(1-3):241-6. PubMed ID: 19879044
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cd (II) stress response during the growth of Aspergillus niger B 77.
    Todorova D; Nedeva D; Abrashev R; Tsekova K
    J Appl Microbiol; 2008 Jan; 104(1):178-84. PubMed ID: 17850314
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-yield production of oxalic acid for metal leaching processes by Aspergillus niger.
    Strasser H; Burgstaller W; Schinner F
    FEMS Microbiol Lett; 1994 Jun; 119(3):365-70. PubMed ID: 8050718
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biosorption of Cd(II) by live and dead cells of Bacillus cereus RC-1 isolated from cadmium-contaminated soil.
    Huang F; Dang Z; Guo CL; Lu GN; Gu RR; Liu HJ; Zhang H
    Colloids Surf B Biointerfaces; 2013 Jul; 107():11-8. PubMed ID: 23466537
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lead immobilization assisted by fungal decomposition of organophosphate under various pH values.
    Zhang L; Song X; Shao X; Wu Y; Zhang X; Wang S; Pan J; Hu S; Li Z
    Sci Rep; 2019 Sep; 9(1):13353. PubMed ID: 31527665
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preliminary studies on tannin degradation by Aspergillus niger van Tieghem MTCC 2425.
    Bhat TK; Makkar HP; Singh B
    Lett Appl Microbiol; 1997 Jul; 25(1):22-3. PubMed ID: 9248075
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dephosphorization of High-Phosphorus Iron Ore Using Different Sources of Aspergillus niger Strains.
    Xiao C; Wu X; Chi R
    Appl Biochem Biotechnol; 2015 May; 176(2):518-28. PubMed ID: 25822597
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic modeling for the biosorption of copper by pretreated Aspergillus niger biomass.
    Mukhopadhyay M; Noronha SB; Suraishkumar GK
    Bioresour Technol; 2007 Jul; 98(9):1781-7. PubMed ID: 16996263
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electron microscopic imaging and NanoSIMS investigation on physiological responses of
    Pan S; Li Z; Wang J; Li X; Meng L; Chen Y; Su M; Li Z
    Front Bioeng Biotechnol; 2022; 10():1096384. PubMed ID: 36714633
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interrogating cadmium and lead biosorption mechanisms by Simplicillium chinense via infrared spectroscopy.
    Jin Z; Xie L; Zhang T; Liu L; Black T; Jones KC; Zhang H; Wang X; Jin N; Zhang D
    Environ Pollut; 2020 Aug; 263(Pt A):114419. PubMed ID: 32220774
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aspergillus niger enhances oxalate production as a response to phosphate deficiency induced by aluminium(III).
    Polák F; Urík M; Bujdoš M; Matúš P
    J Inorg Biochem; 2020 Mar; 204():110961. PubMed ID: 31887612
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biosorption of copper, zinc, cadmium and chromium ions from aqueous solution by natural foxtail millet shell.
    Peng SH; Wang R; Yang LZ; He L; He X; Liu X
    Ecotoxicol Environ Saf; 2018 Dec; 165():61-69. PubMed ID: 30193165
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Removal of arsenic from aqueous environments by native and chemically modified biomass of Aspergillus niger and Neosartorya fischeri.
    Littera P; Urík M; Sevc J; Kolencík M; Gardosová K; Molnárová M
    Environ Technol; 2011; 32(11-12):1215-22. PubMed ID: 21970163
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Environmental fungi and bacteria facilitate lecithin decomposition and the transformation of phosphorus to apatite.
    Li C; Li Q; Wang Z; Ji G; Zhao H; Gao F; Su M; Jiao J; Li Z; Li H
    Sci Rep; 2019 Oct; 9(1):15291. PubMed ID: 31653926
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Artificial intelligence and regression analysis for Cd(II) ion biosorption from aqueous solution by Gossypium barbadense waste.
    Fawzy M; Nasr M; Nagy H; Helmi S
    Environ Sci Pollut Res Int; 2018 Feb; 25(6):5875-5888. PubMed ID: 29235028
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced removal of trichlorfon and Cd(II) from aqueous solution by magnetically separable chitosan beads immobilized Aspergillus sydowii.
    Zhang C; Chen Z; Tao Y; Ke T; Li S; Wang P; Chen L
    Int J Biol Macromol; 2020 Apr; 148():457-465. PubMed ID: 31972191
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Comparative Study on the Biosorption of Cd2+ onto Paecilomyces lilacinus XLA and Mucoromycote sp. XLC.
    Xia L; Xu X; Zhu W; Huang Q; Chen W
    Int J Mol Sci; 2015 Jul; 16(7):15670-87. PubMed ID: 26184169
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxalic acid production by Aspergillus niger: an oxalate-non-producing mutant produces citric acid at pH 5 and in the presence of manganese.
    Ruijter GJG; van de Vondervoort PJI; Visser J
    Microbiology (Reading); 1999 Sep; 145 ( Pt 9)():2569-2576. PubMed ID: 10517610
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.