BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 31889277)

  • 1. Ecotoxicological risk evaluation and regulatory compliance of endocrine disruptor phthalates in a sustainable wastewater treatment scheme.
    Gani KM; Kazmi AA
    Environ Sci Pollut Res Int; 2020 Mar; 27(8):7785-7794. PubMed ID: 31889277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative assessment of phthalate removal and risk in biological wastewater treatment systems of developing countries and small communities.
    Gani KM; Kazmi AA
    Sci Total Environ; 2016 Nov; 569-570():661-671. PubMed ID: 27380392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contamination level of four priority phthalates in North Indian wastewater treatment plants and their fate in sequencing batch reactor systems.
    Gani KM; Rajpal A; Kazmi AA
    Environ Sci Process Impacts; 2016 Mar; 18(3):406-16. PubMed ID: 26923228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Occurrence and fate of phthalates in wastewater treatment plants in Beijing, China].
    Zhou YQ; Liu YX
    Huan Jing Ke Xue; 2013 Apr; 34(4):1357-62. PubMed ID: 23798114
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Occurrence, removal, and environmental risk of phthalates in wastewaters, landfill leachates, and groundwater in Poland.
    Kotowska U; Kapelewska J; Sawczuk R
    Environ Pollut; 2020 Dec; 267():115643. PubMed ID: 33254702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of occurrence, fate and removal of priority phthalate esters (PAEs) in wastewater and sewage sludge by advanced biological treatment, waste stabilization pond and constructed wetland.
    Nas B; Ateş H; Dolu T; Yel E; Argun ME; Koyuncu S; Kara M; Dinç S
    Chemosphere; 2022 May; 295():133864. PubMed ID: 35150704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phthalates removal efficiency in different wastewater treatment technology in the Eastern Cape, South Africa.
    Salaudeen T; Okoh O; Agunbiade F; Okoh A
    Environ Monit Assess; 2018 Apr; 190(5):299. PubMed ID: 29679156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fate and impact of phthalates in activated sludge treated municipal wastewater on the water bodies in the Eastern Cape, South Africa.
    Salaudeen T; Okoh O; Agunbiade F; Okoh A
    Chemosphere; 2018 Jul; 203():336-344. PubMed ID: 29626811
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening of phthalate esters in 47 branded perfumes.
    Al-Saleh I; Elkhatib R
    Environ Sci Pollut Res Int; 2016 Jan; 23(1):455-68. PubMed ID: 26310707
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Endocrine disruptor phthalates in bottled water: daily exposure and health risk assessment in pregnant and lactating women.
    Jeddi MZ; Rastkari N; Ahmadkhaniha R; Yunesian M
    Environ Monit Assess; 2016 Sep; 188(9):534. PubMed ID: 27557841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Occurrence and fate of phthalate esters in full-scale domestic wastewater treatment plants and their impact on receiving waters along the Songhua River in China.
    Gao D; Li Z; Wen Z; Ren N
    Chemosphere; 2014 Jan; 95():24-32. PubMed ID: 24001662
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of occurrence and fate of endocrine disruptors: diethyl phthalate and dibutyl phthalate in ASP- and SBR-based wastewater treatment plants.
    Saini G; Pant S; Singh SO; Kazmi AA; Alam T
    Environ Monit Assess; 2016 Nov; 188(11):609. PubMed ID: 27718090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods for the Determination of Endocrine-Disrupting Phthalate Esters.
    Qureshi MS; Yusoff AR; Wirzal MD; Sirajuddin ; Barek J; Afridi HI; Üstündag Z
    Crit Rev Anal Chem; 2016; 46(2):146-59. PubMed ID: 25831046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of phthalate esters in an activated sludge wastewater treatment plant.
    Roslev P; Vorkamp K; Aarup J; Frederiksen K; Nielsen PH
    Water Res; 2007 Mar; 41(5):969-76. PubMed ID: 17258263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phthalate removal throughout wastewater treatment plant: case study of Marne Aval station (France).
    Dargnat C; Teil MJ; Chevreuil M; Blanchard M
    Sci Total Environ; 2009 Feb; 407(4):1235-44. PubMed ID: 19036415
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genotoxic activity of endocrine disrupting compounds commonly present in paper mill effluents.
    Balabanič D; Filipič M; Krivograd Klemenčič A; Žegura B
    Sci Total Environ; 2021 Nov; 794():148489. PubMed ID: 34217092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel miniaturized passive sampling devices based on liquid phase microextraction equipped with cellulose-grafted membranes for the environmental monitoring of phthalic acid esters in natural waters.
    Minho LAC; Valenzuela EF; Cardeal ZL; Menezes HC
    Anal Chim Acta; 2022 Oct; 1231():340405. PubMed ID: 36220296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phthalates in underground waters of the Zagreb area.
    Mihovec-Grdić M; Smit Z; Puntarić D; Bosnir J
    Croat Med J; 2002 Aug; 43(4):493-7. PubMed ID: 12187530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Emergent contaminants in the wastewater effluents of two highly populated tropical cities.
    Soler-Llavina SM; Ortiz-Zayas JR
    J Water Health; 2017 Oct; 15(6):873-884. PubMed ID: 29215352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Occurrence and risk assessment of selected phthalates in drinking water from waterworks in China.
    Liu X; Shi J; Bo T; Li H; Crittenden JC
    Environ Sci Pollut Res Int; 2015 Jul; 22(14):10690-8. PubMed ID: 25752631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.