These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 31889328)
21. Identification of SNP loci and candidate genes related to four important fatty acid composition in Brassica napus using genome wide association study. Zhu Q; King GJ; Liu X; Shan N; Borpatragohain P; Baten A; Wang P; Luo S; Zhou Q PLoS One; 2019; 14(8):e0221578. PubMed ID: 31442274 [TBL] [Abstract][Full Text] [Related]
22. Brassica villosa, a system for studying non-glandular trichomes and genes in the Brassicas. Nayidu NK; Tan Y; Taheri A; Li X; Bjorndahl TC; Nowak J; Wishart DS; Hegedus D; Gruber MY Plant Mol Biol; 2014 Jul; 85(4-5):519-39. PubMed ID: 24831512 [TBL] [Abstract][Full Text] [Related]
23. Genome-wide-association study and transcriptome analysis reveal the genetic basis controlling the formation of leaf wax in Brassica napus. Long Z; Tu M; Xu Y; Pak H; Zhu Y; Dong J; Lu Y; Jiang L J Exp Bot; 2023 Apr; 74(8):2726-2739. PubMed ID: 36724105 [TBL] [Abstract][Full Text] [Related]
24. Overexpression of Tian N; Liu F; Wang P; Yan X; Gao H; Zeng X; Wu G Int J Mol Sci; 2018 Jun; 19(6):. PubMed ID: 29895724 [TBL] [Abstract][Full Text] [Related]
25. Seedling development traits in Brassica napus examined by gene expression analysis and association mapping. Körber N; Bus A; Li J; Higgins J; Bancroft I; Higgins EE; Parkin IA; Salazar-Colqui B; Snowdon RJ; Stich B BMC Plant Biol; 2015 Jun; 15():136. PubMed ID: 26055390 [TBL] [Abstract][Full Text] [Related]
26. Transcriptomic analysis of nitrogen starvation- and cultivar-specific leaf senescence in winter oilseed rape (Brassica napus L.). Koeslin-Findeklee F; Rizi VS; Becker MA; Parra-Londono S; Arif M; Balazadeh S; Mueller-Roeber B; Kunze R; Horst WJ Plant Sci; 2015 Apr; 233():174-185. PubMed ID: 25711825 [TBL] [Abstract][Full Text] [Related]
27. Spatio-temporal expression dynamics differ between homologues of flowering time genes in the allopolyploid Brassica napus. Jones DM; Wells R; Pullen N; Trick M; Irwin JA; Morris RJ Plant J; 2018 Oct; 96(1):103-118. PubMed ID: 29989238 [TBL] [Abstract][Full Text] [Related]
28. The high-quality genome of Brassica napus cultivar 'ZS11' reveals the introgression history in semi-winter morphotype. Sun F; Fan G; Hu Q; Zhou Y; Guan M; Tong C; Li J; Du D; Qi C; Jiang L; Liu W; Huang S; Chen W; Yu J; Mei D; Meng J; Zeng P; Shi J; Liu K; Wang X; Wang X; Long Y; Liang X; Hu Z; Huang G; Dong C; Zhang H; Li J; Zhang Y; Li L; Shi C; Wang J; Lee SM; Guan C; Xu X; Liu S; Liu X; Chalhoub B; Hua W; Wang H Plant J; 2017 Nov; 92(3):452-468. PubMed ID: 28849613 [TBL] [Abstract][Full Text] [Related]
29. Molecular identification of the phosphate transporter family 1 (PHT1) genes and their expression profiles in response to phosphorus deprivation and other abiotic stresses in Brassica napus. Li Y; Wang X; Zhang H; Wang S; Ye X; Shi L; Xu F; Ding G PLoS One; 2019; 14(7):e0220374. PubMed ID: 31344115 [TBL] [Abstract][Full Text] [Related]
30. Single nucleotide polymorphism (SNP) discovery in the polyploid Brassica napus using Solexa transcriptome sequencing. Trick M; Long Y; Meng J; Bancroft I Plant Biotechnol J; 2009 May; 7(4):334-46. PubMed ID: 19207216 [TBL] [Abstract][Full Text] [Related]
31. Genome-wide mining and comparative analysis of fatty acid elongase gene family in Brassica napus and its progenitors. Xue Y; Jiang J; Yang X; Jiang H; Du Y; Liu X; Xie R; Chai Y Gene; 2020 Jul; 747():144674. PubMed ID: 32304781 [TBL] [Abstract][Full Text] [Related]
32. Fine mapping and candidate gene analysis of an anthocyanin-rich gene, BnaA.PL1, conferring purple leaves in Brassica napus L. Li H; Zhu L; Yuan G; Heng S; Yi B; Ma C; Shen J; Tu J; Fu T; Wen J Mol Genet Genomics; 2016 Aug; 291(4):1523-34. PubMed ID: 27003438 [TBL] [Abstract][Full Text] [Related]
33. In vitro shoot organogenesis and hormone response are affected by the altered levels of Brassica napus meristem genes. Elhiti M; Stasolla C Plant Sci; 2012 Jul; 190():40-51. PubMed ID: 22608518 [TBL] [Abstract][Full Text] [Related]
34. Zhong X; Zhou Q; Cui N; Cai D; Tang G Int J Mol Sci; 2019 Apr; 20(7):. PubMed ID: 30965683 [TBL] [Abstract][Full Text] [Related]
35. Genes encoding the biotin carboxylase subunit of acetyl-CoA carboxylase from Brassica napus and parental species: cloning, expression patterns, and evolution. Li ZG; Yin WB; Song LY; Chen YH; Guan RZ; Wang JQ; Wang RR; Hu ZM Genome; 2011 Mar; 54(3):202-11. PubMed ID: 21423283 [TBL] [Abstract][Full Text] [Related]
36. The expression patterns of SAG12/Cab genes reveal the spatial and temporal progression of leaf senescence in Brassica napus L. with sensitivity to the environment. Gombert J; Etienne P; Ourry A; Le Dily F J Exp Bot; 2006; 57(9):1949-56. PubMed ID: 16720615 [TBL] [Abstract][Full Text] [Related]
37. A systematic dissection of the mechanisms underlying the natural variation of silique number in rapeseed (Brassica napus L.) germplasm. Li S; Zhu Y; Varshney RK; Zhan J; Zheng X; Shi J; Wang X; Liu G; Wang H Plant Biotechnol J; 2020 Feb; 18(2):568-580. PubMed ID: 31368615 [TBL] [Abstract][Full Text] [Related]
38. Identification of a gene controlling variation in the salt tolerance of rapeseed (Brassica napus L.). Yong HY; Wang C; Bancroft I; Li F; Wu X; Kitashiba H; Nishio T Planta; 2015 Jul; 242(1):313-26. PubMed ID: 25921693 [TBL] [Abstract][Full Text] [Related]
39. Homoeolog expression bias and expression level dominance in resynthesized allopolyploid Brassica napus. Wu J; Lin L; Xu M; Chen P; Liu D; Sun Q; Ran L; Wang Y BMC Genomics; 2018 Aug; 19(1):586. PubMed ID: 30081834 [TBL] [Abstract][Full Text] [Related]
40. Transcript profiling of oilseed rape (Brassica napus) primed for biocontrol differentiate genes involved in microbial interactions with beneficial Bacillus amyloliquefaciens from pathogenic Botrytis cinerea. Sarosh BR; Danielsson J; Meijer J Plant Mol Biol; 2009 May; 70(1-2):31-45. PubMed ID: 19184461 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]