These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Analysis of conventional and alternative CRISPR/Cas9 genome editing to enhance a single-base pair knock-in mutation. Edmondson C; Zhou Q; Liu X BMC Biotechnol; 2021 Jul; 21(1):45. PubMed ID: 34315458 [TBL] [Abstract][Full Text] [Related]
4. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Hruscha A; Krawitz P; Rechenberg A; Heinrich V; Hecht J; Haass C; Schmid B Development; 2013 Dec; 140(24):4982-7. PubMed ID: 24257628 [TBL] [Abstract][Full Text] [Related]
5. Efficient genome editing in Aspergillus niger with an improved recyclable CRISPR-HDR toolbox and its application in introducing multiple copies of heterologous genes. Dong H; Zheng J; Yu D; Wang B; Pan L J Microbiol Methods; 2019 Aug; 163():105655. PubMed ID: 31226337 [TBL] [Abstract][Full Text] [Related]
6. CRISPR-Cas9 system: A new-fangled dawn in gene editing. Gupta D; Bhattacharjee O; Mandal D; Sen MK; Dey D; Dasgupta A; Kazi TA; Gupta R; Sinharoy S; Acharya K; Chattopadhyay D; Ravichandiran V; Roy S; Ghosh D Life Sci; 2019 Sep; 232():116636. PubMed ID: 31295471 [TBL] [Abstract][Full Text] [Related]
7. Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish. Kawahara A; Hisano Y; Ota S; Taimatsu K Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27187373 [TBL] [Abstract][Full Text] [Related]
8. CRISPR/Cas9-mediated correction of human genetic disease. Men K; Duan X; He Z; Yang Y; Yao S; Wei Y Sci China Life Sci; 2017 May; 60(5):447-457. PubMed ID: 28534256 [TBL] [Abstract][Full Text] [Related]
9. Rapid and efficient generation of GFP-knocked-in Drosophila by the CRISPR-Cas9-mediated genome editing. Kina H; Yoshitani T; Hanyu-Nakamura K; Nakamura A Dev Growth Differ; 2019 May; 61(4):265-275. PubMed ID: 31037730 [TBL] [Abstract][Full Text] [Related]
10. CRISPR/Cas9-Mediated Targeted Knockin of Exogenous Reporter Genes in Zebrafish. Kawahara A Methods Mol Biol; 2017; 1630():165-173. PubMed ID: 28643258 [TBL] [Abstract][Full Text] [Related]
11. Comparison and optimization of different CRISPR/Cas9 donor-adapting systems for gene editing. Ma BX; Yang S; Lyu M; Wang YR; Chang LY; Han YF; Wang JG; Guo Y; Xu K Yi Chuan; 2024 Jun; 46(6):466-477. PubMed ID: 38886150 [TBL] [Abstract][Full Text] [Related]
12. Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/CRISPR-Associated Endonuclease Cas9-Mediated Homology-Independent Integration for Generating Quality Control Materials for Clinical Molecular Genetic Testing. Lin G; Zhang K; Peng R; Han Y; Xie J; Li J J Mol Diagn; 2018 May; 20(3):373-380. PubMed ID: 29680088 [TBL] [Abstract][Full Text] [Related]
13. Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing. Artegiani B; Hendriks D; Beumer J; Kok R; Zheng X; Joore I; Chuva de Sousa Lopes S; van Zon J; Tans S; Clevers H Nat Cell Biol; 2020 Mar; 22(3):321-331. PubMed ID: 32123335 [TBL] [Abstract][Full Text] [Related]
14. High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize. Feng C; Su H; Bai H; Wang R; Liu Y; Guo X; Liu C; Zhang J; Yuan J; Birchler JA; Han F Plant Biotechnol J; 2018 Nov; 16(11):1848-1857. PubMed ID: 29569825 [TBL] [Abstract][Full Text] [Related]
15. A simple and practical workflow for genotyping of CRISPR-Cas9-based knockout phenotypes using multiplexed amplicon sequencing. Iida M; Suzuki M; Sakane Y; Nishide H; Uchiyama I; Yamamoto T; Suzuki KT; Fujii S Genes Cells; 2020 Jul; 25(7):498-509. PubMed ID: 32323394 [TBL] [Abstract][Full Text] [Related]
16. Low-temperature incubation improves both knock-in and knock-down efficiencies by the CRISPR/Cas9 system in Xenopus laevis as revealed by quantitative analysis. Kato S; Fukazawa T; Kubo T Biochem Biophys Res Commun; 2021 Mar; 543():50-55. PubMed ID: 33515912 [TBL] [Abstract][Full Text] [Related]
17. Efficient SSA-mediated precise genome editing using CRISPR/Cas9. Li X; Bai Y; Cheng X; Kalds PGT; Sun B; Wu Y; Lv H; Xu K; Zhang Z FEBS J; 2018 Sep; 285(18):3362-3375. PubMed ID: 30085411 [TBL] [Abstract][Full Text] [Related]
18. Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing. Yuan M; Zhu J; Gong L; He L; Lee C; Han S; Chen C; He G BMC Biotechnol; 2019 Apr; 19(1):24. PubMed ID: 31035982 [TBL] [Abstract][Full Text] [Related]
19. Ways of improving precise knock-in by genome-editing technologies. Smirnikhina SA; Anuchina AA; Lavrov AV Hum Genet; 2019 Jan; 138(1):1-19. PubMed ID: 30390160 [TBL] [Abstract][Full Text] [Related]
20. Creation of knock out and knock in mice by CRISPR/Cas9 to validate candidate genes for human male infertility, interest, difficulties and feasibility. Kherraf ZE; Conne B; Amiri-Yekta A; Kent MC; Coutton C; Escoffier J; Nef S; Arnoult C; Ray PF Mol Cell Endocrinol; 2018 Jun; 468():70-80. PubMed ID: 29522859 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]