These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31889444)

  • 41. Assembly of streptolysin O pores assessed by quartz crystal microbalance and atomic force microscopy provides evidence for the formation of anchored but incomplete oligomers.
    Stewart SE; D'Angelo ME; Paintavigna S; Tabor RF; Martin LL; Bird PI
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt A):115-26. PubMed ID: 25312695
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Characterization of supported lipid bilayer disruption by chrysophsin-3 using QCM-D.
    Wang KF; Nagarajan R; Mello CM; Camesano TA
    J Phys Chem B; 2011 Dec; 115(51):15228-35. PubMed ID: 22085290
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes.
    Arouri A; Dathe M; Blume A
    Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704
    [TBL] [Abstract][Full Text] [Related]  

  • 44. New 2-in-1 polyelectrolyte step-by-step film buildup without solution alternation: from PEDOT-PSS to polyelectrolyte complexes.
    de Saint-Aubin C; Hemmerlé J; Boulmedais F; Vallat MF; Nardin M; Schaaf P
    Langmuir; 2012 Jun; 28(23):8681-91. PubMed ID: 22594657
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A fluorescence spectroscopy study on the interactions of the TAT-PTD peptide with model lipid membranes.
    Tiriveedhi V; Butko P
    Biochemistry; 2007 Mar; 46(12):3888-95. PubMed ID: 17338552
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of bilayer charge on lipoprotein lipid exchange.
    Browning KL; Lind TK; Maric S; Barker RD; Cárdenas M; Malmsten M
    Colloids Surf B Biointerfaces; 2018 Aug; 168():117-125. PubMed ID: 29422308
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Segregation of negatively charged phospholipids by the polycationic and farnesylated membrane anchor of Kras.
    Janosi L; Gorfe AA
    Biophys J; 2010 Dec; 99(11):3666-74. PubMed ID: 21112291
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Membrane Reconstitution of Monoamine Oxidase Enzymes on Supported Lipid Bilayers.
    Wang L; Biswas KH; Yoon BK; Kawakami LM; Park S; Groves JT; Li L; Huang W; Cho NJ
    Langmuir; 2018 Sep; 34(36):10764-10773. PubMed ID: 30049212
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Formation of supported lipid bilayers at surfaces with controlled curvatures: influence of lipid charge.
    Sundh M; Svedhem S; Sutherland DS
    J Phys Chem B; 2011 Jun; 115(24):7838-48. PubMed ID: 21630649
    [TBL] [Abstract][Full Text] [Related]  

  • 50. HIV and influenza fusion peptide interactions with (dis)ordered lipid bilayers: Understanding mechanisms and implications for antimicrobial and antiviral approaches.
    Miłogrodzka I; Le Brun AP; Banaszak Holl MM; van 't Hag L
    J Colloid Interface Sci; 2024 Sep; 670():563-575. PubMed ID: 38776691
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of topology, length, and charge on the activity of a kininogen-derived peptide on lipid membranes and bacteria.
    Ringstad L; Kacprzyk L; Schmidtchen A; Malmsten M
    Biochim Biophys Acta; 2007 Mar; 1768(3):715-27. PubMed ID: 17207456
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Viscoelastic changes measured in partially suspended single bilayer membranes.
    Hasan IY; Mechler A
    Soft Matter; 2015 Jul; 11(27):5571-9. PubMed ID: 26073288
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Peptide Disc Mediated Control of Membrane Protein Orientation in Supported Lipid Bilayers for Surface-Sensitive Investigations.
    Luchini A; Tidemand FG; Johansen NT; Campana M; Sotres J; Ploug M; Cárdenas M; Arleth L
    Anal Chem; 2020 Jan; 92(1):1081-1088. PubMed ID: 31769649
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electrostatic deposition of polycations and polyanions onto cysteine monolayers.
    Sanders W; Anderson MR
    J Colloid Interface Sci; 2009 Mar; 331(2):318-21. PubMed ID: 19108847
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dissipation-enhanced quartz crystal microbalance studies on the experimental parameters controlling the formation of supported lipid bilayers.
    Seantier B; Breffa C; Félix O; Decher G
    J Phys Chem B; 2005 Nov; 109(46):21755-65. PubMed ID: 16853826
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pore formation coupled to ion transport through lipid membranes as induced by transmembrane ionic charge imbalance: atomistic molecular dynamics study.
    Gurtovenko AA; Vattulainen I
    J Am Chem Soc; 2005 Dec; 127(50):17570-1. PubMed ID: 16351063
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Antimicrobial peptide alamethicin insertion into lipid bilayer: a QCM-D exploration.
    Wang KF; Nagarajan R; Camesano TA
    Colloids Surf B Biointerfaces; 2014 Apr; 116():472-81. PubMed ID: 24561501
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Real-time QCM-D monitoring of electrostatically driven lipid transfer between two lipid bilayer membranes.
    Wikström A; Svedhem S; Sivignon M; Kasemo B
    J Phys Chem B; 2008 Nov; 112(44):14069-74. PubMed ID: 18850739
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular response and cooperative behavior during the interactions of melittin with a membrane: dissipative quartz crystal microbalance experiments and simulations.
    Lu N; Yang K; Yuan B; Ma Y
    J Phys Chem B; 2012 Aug; 116(31):9432-8. PubMed ID: 22794087
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Binding of small basic peptides to membranes containing acidic lipids: theoretical models and experimental results.
    Ben-Tal N; Honig B; Peitzsch RM; Denisov G; McLaughlin S
    Biophys J; 1996 Aug; 71(2):561-75. PubMed ID: 8842196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.