These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
51 related articles for article (PubMed ID: 3188961)
1. [Correlation between myocardial relaxation and phosphorylation of phospholamban]. Vittone L; Mundiña C; Chiappe de Cingolani G; Mattiazzi A Acta Physiol Pharmacol Latinoam; 1988; 38(2):213-27. PubMed ID: 3188961 [TBL] [Abstract][Full Text] [Related]
2. Dissociation between contraction and relaxation: the possible role of phospholamban phosphorylation. Mundiña de Weilenmann C; Vittone L; de Cingolani G; Mattiazzi A Basic Res Cardiol; 1987; 82(6):507-16. PubMed ID: 2963614 [TBL] [Abstract][Full Text] [Related]
3. Long-term beta adrenoceptor-mediated alteration in contractility and expression of phospholamban and sarcoplasmic reticulum Ca(++)-ATPase in mammalian ventricle. Linck B; Bokník P; Baba HA; Eschenhagen T; Haverkamp U; Jäckel E; Jones LR; Kirchhefer U; Knapp J; Läer S; Müller FU; Schmitz W; Scholz H; Syska A; Vahlensieck U; Neumann J J Pharmacol Exp Ther; 1998 Jul; 286(1):531-8. PubMed ID: 9655899 [TBL] [Abstract][Full Text] [Related]
4. [Inhibitory effect of propranolol on myocardial relaxation not mediated by beta blockade]. Pedroni P; Mattiazzi A; Gende OA; Cingolani HE Acta Physiol Pharmacol Latinoam; 1987; 37(4):503-19. PubMed ID: 3274025 [TBL] [Abstract][Full Text] [Related]
5. Time course and mechanisms of phosphorylation of phospholamban residues in ischemia-reperfused rat hearts. Dissociation of phospholamban phosphorylation pathways. Vittone L; Mundiña-Weilenmann C; Said M; Ferrero P; Mattiazzi A J Mol Cell Cardiol; 2002 Jan; 34(1):39-50. PubMed ID: 11812163 [TBL] [Abstract][Full Text] [Related]
6. Insulin inhibits beta-adrenergic action in ischemic/reperfused heart: a novel mechanism of insulin in cardioprotection. Yu QJ; Si R; Zhou N; Zhang HF; Guo WY; Wang HC; Gao F Apoptosis; 2008 Feb; 13(2):305-17. PubMed ID: 18165901 [TBL] [Abstract][Full Text] [Related]
7. Role of phosphorylation of Thr(17) residue of phospholamban in mechanical recovery during hypercapnic acidosis. Mundiña-Weilenmann C; Ferrero P; Said M; Vittone L; Kranias EG; Mattiazzi A Cardiovasc Res; 2005 Apr; 66(1):114-22. PubMed ID: 15769454 [TBL] [Abstract][Full Text] [Related]
8. Role of phospholamban phosphorylation on Thr17 in cardiac physiological and pathological conditions. Mattiazzi A; Mundiña-Weilenmann C; Guoxiang C; Vittone L; Kranias E Cardiovasc Res; 2005 Dec; 68(3):366-75. PubMed ID: 16226237 [TBL] [Abstract][Full Text] [Related]
9. Phosphorylation of phospholamban in ischemia-reperfusion injury: functional role of Thr17 residue. Mattiazzi A; Mundiña-Weilenmann C; Vittone L; Said M Mol Cell Biochem; 2004 Aug; 263(1-2):131-6. PubMed ID: 15524173 [TBL] [Abstract][Full Text] [Related]
10. Phosphorylation of phospholamban at threonine-17 in the absence and presence of beta-adrenergic stimulation in neonatal rat cardiomyocytes. Bartel S; Vetter D; Schlegel WP; Wallukat G; Krause EG; Karczewski P J Mol Cell Cardiol; 2000 Dec; 32(12):2173-85. PubMed ID: 11112993 [TBL] [Abstract][Full Text] [Related]
11. Targeted overexpression of phospholamban to mouse atrium depresses Ca2+ transport and contractility. Neumann J; Boknik P; DePaoli-Roach AA; Field LJ; Rockman HA; Kobayashi YM; Kelley JS; Jones LR J Mol Cell Cardiol; 1998 Oct; 30(10):1991-2002. PubMed ID: 9799653 [TBL] [Abstract][Full Text] [Related]
12. Phosphorylation of phospholamban and troponin I in the ischemic and reperfused heart: attenuation and restoration of isoprenaline responsiveness. Bartel S; Karczewski P; Krause EG Biomed Biochim Acta; 1989; 48(2-3):S108-13. PubMed ID: 2525030 [TBL] [Abstract][Full Text] [Related]
13. Enhanced myocardial relaxation in vivo in transgenic mice overexpressing the beta2-adrenergic receptor is associated with reduced phospholamban protein. Rockman HA; Hamilton RA; Jones LR; Milano CA; Mao L; Lefkowitz RJ J Clin Invest; 1996 Apr; 97(7):1618-23. PubMed ID: 8601626 [TBL] [Abstract][Full Text] [Related]
14. Gender influences on sarcoplasmic reticulum Ca2+-handling in failing human myocardium. Dash R; Frank KF; Carr AN; Moravec CS; Kranias EG J Mol Cell Cardiol; 2001 Jul; 33(7):1345-53. PubMed ID: 11437540 [TBL] [Abstract][Full Text] [Related]
15. Decrease in time to peak tension produced by calcium blockers and isoproterenol. Its dependence on extracellular calcium. Garay A; Mattiazzi A Acta Physiol Lat Am; 1982; 32(4):295-302. PubMed ID: 7186745 [TBL] [Abstract][Full Text] [Related]
16. Lusitropic effect of MCC-135 is associated with improvement of sarcoplasmic reticulum function in ventricular muscles of rats with diabetic cardiomyopathy. Satoh N; Sato T; Shimada M; Yamada K; Kitada Y J Pharmacol Exp Ther; 2001 Sep; 298(3):1161-6. PubMed ID: 11504815 [TBL] [Abstract][Full Text] [Related]
18. Troponin I phosphorylation plays an important role in the relaxant effect of beta-adrenergic stimulation in mouse hearts. Peña JR; Wolska BM Cardiovasc Res; 2004 Mar; 61(4):756-63. PubMed ID: 14985072 [TBL] [Abstract][Full Text] [Related]
19. Frequency- and afterload-dependent cardiac modulation in vivo by troponin I with constitutively active protein kinase A phosphorylation sites. Takimoto E; Soergel DG; Janssen PM; Stull LB; Kass DA; Murphy AM Circ Res; 2004 Mar; 94(4):496-504. PubMed ID: 14726477 [TBL] [Abstract][Full Text] [Related]